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Abstract. Visual foveation is the association of a spatially variant resolution
sensor — the retina — and a dynamic controlled mechanism for directing the
area of maximal acuity. This paper describes a processing chain able to ex-
ploit and control foveated vision for high level interpretation tasks requiring
high resolution in several areas of the field of view, such as subordinate or
fine-grained recognition. The process sequentially rejects wrong hypotheses by
applying binary classifiers between subsets of hypotheses on local parts accord-
ing to an adaptive policy maximizing the rejection capacity. The algorithm is
evaluated on a problem of fine-grained car classification. Foveation is mimicked
by subsampling high resolution images'. The underlying addressed question is
the design of high-level image understanding tasks that are compliant with a
given visual bandwidth, i.e. with a given budget of acquired pixels per time.

1 Sequential hypothesis rejection

The recognition task is considered as a sequential hypothesis rejection process, starting
from a set of possible hypotheses or classes {2y and iteratively reducing the current set
of active hypotheses {2; by applying a sequence of tests to selected piece of data, here
discriminative parts of an object. Several tests, with different rejected hypotheses,
can be applied to the same data, and at a different time of the process.

The main difference with the usual way sequential testing is performed is that
what is maintained during the process is not the posterior probability on the whole
set of hypotheses, or a function of it (entropy, mutual information), but simply the
estimated support of this distribution, i.e. the set of active hypotheses. Tests are
chosen according to their rejection capacity as described below.

It is assumed the availability of a repertoire of tests indexed by k. A rejection test
k is a function wy with values in {0,1} of a data or a feature X. The function is
designed to be a negative indicator of a set of hypotheses (2, : if its output value is 0,
all hypotheses Y € {2, can be discarded with probability 1. This behavior can usually
be achieved by setting an appropriate threshold. We define i (Y) = Ex |y [wi(X) =
0] the hypothesis-wide power of the rejection test for Y ¢ (2, where Ex|y is the
mathematical expectation on data X when the hypothesis Y is true. The bigger value
of B, (Y), the higher chance hypotheses in (2, are rejected by test k if Y is true.

LA short video illustrating the recognition process is available at
http://youtu.be/51IbY3A0yC4
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The average rejection capacity of test k& when the current set of active hypotheses
is 2 can be defined as:

Cr(2) =12, N0 > wyvB(Y) (1)
Yeo\op

where 7y is the prior on hypothesis Y. This quantity is proportional to the number of
potentially rejected hypotheses and to the average power over potentially hypotheses.
With a little algebra and a uniform prior, it is easy to show that the best test is the
one that maximizes [£2,” N 2|.[f2\£2, |, i.e. a test that tries to reject half of the active
hypotheses.

Given a repertoire of tests k € KC, and their associated rejection capacity function
C1(£2), the sequential recognition by rejection algorithm can be easily implemented
following a greedy policy k*(t) = argmax, x Cr(£2).

The testing strategy used in the experiments follows a simple adaptive scheme
function of the current set of active hypotheses {2;. The global process maintains an
accumulation counter registering the number of times each hypothesis has passed a re-
jection test. The tests are ranked according to 1 and applied sequentially. Hypotheses
that have been considered for rejection more than 7 times are removed from (2; and a
new ranking is computed from the updated set (2;,1. The role of such an accumula-
tion scheme is to avoid bad estimation of the rejection thresholds when learning data
is scarce. A typical value of 5 was empirically proven to be optimal on the problem
tested.

The process stops either when allowed time is exhausted, or when the repertoire
of valid actions has been exhausted or when at most one hypothesis remains active.
If more than one hypothesis remains active, the prediction is the hypothesis with the
least number of votes for rejection in the accumulator.

2 Related work

Local attributes and parts for fine-grained recognition One of the key questions in fine
grained visual categorization is the construction of the good features able to deal with
the new discrimination vs. invariance tradeoff required for this type of problem [1-5].
A series of work propose to use basic level categorization to locate the informative
parts that can be used for the subordinate classification. In [6] a strongly supervised
DPM [7] is used to detect the parts. [8] describes a non adaptive sequential approach
exploiting and constructing features both at the basic and subordinate category level
applied to leaf recognition.[9] uses shape alignment at basic-level categorical to help
position more specific features. [10] present an approach for fine-grained recognition
of cars and extend their previous work by introducing geometric 3D modeling in the
feature extraction process. [11] develops an original approach for the identification
of high resolution informative parts from human expertise by providing to the user
blurred images.

Sequential decision process for object recognition Sequential decision strategies have a
long history in statistics since the early work of Wald [12] (see [13] for recent develop-
ments). In computer vision, sequential decision processes have been implemented in
the form of coarse to fine strategies [14-16] or cascade-like structures [17] applied to
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categorical object detection rather than classification. Fewer studies have addressed
the question of object classification.[18] describes a random sampling strategy opti-
mizing the asymptotic speed of convergence of a sequential maximum likelihood test.
In [19-22] a policy able to select the best detector or features to apply at a given
location is learned by reinforcement learning. In artificial and robotics systems, se-
quential attention [23-25] and perception/action loops have been a traditional topic
of investigation. They have been mostly reduced to the question of ”"where to look
next?” [26] in order to search for a given object [27-29] or to build a representation
of the environement [30]. Higher-level cognitive functions have been often reduced to
an active object recognition where the main goal was to move the sensor in order to
acquire a more informative viewpoint on a 3D object [31-33].

3 Experiments
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Fig. 1. Samples of the 11 classes of the image database. The high resolution images have
size 1600 x 1200.

The recognition by sequential rejection approach has been applied to foveated
vision for fine grained classification of cars. Foveation is simulated by observing a
high resolution image with a given subsampling ratio on specific areas.

The database of images exploited contains 166 images
of 11 classes of sub-compact cars taken approximately
with the same orientation (Fig. 1). They were all taken
with the same camera and with similar focal length. The
objects have very similar body shapes, and 7 of the classes
are versions of the same model (different years, differ-
ent number of doors). All the images are richly seman-
tically annotated with 15 details or subparts of various
sizes (Fig. 2). This database has been previously used in Fig. 2. Rich annotation on
[34] for a problem of hierarchical multi-label annotation. car.

Object parts are located relatively to a basic-level cat-
egory car detector operated at low resolution. A subsampling with factor 10 of the
original image, reducing the whole field of view to a 160 x 120 image gave sufficiently
good results using the provided models with the available DPM distribution [35].

Once the overall object shape is detected, each part at a given scale, according
to the rejection test applied, is searched inside an area defined in local coordinates
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from the basic-level detection bounding box. The detection of the part ("rear window
mirror”, ”front left headlight”, ”front wheel” ...) is then produced by applying a de-
tector in a sliding window approach, and estimating the part location as the response
of maximal value. The width of each part, the sub-sampling factor and the size of
the search area have been optimized off-line. Overall, the maximal number of pixels
acquired to process all the parts and detecting the car at low resolution is compressed
by a factor 16 compared to the full resolution data.

Learning occurs at two levels: categorical detection of parts and rejection tests.
Since the database is small, cross validation with 15 folds ensuring that each fold
contained at least one sample of each class has been used.

For the categorical detection of parts, the positive examples are taken from the
annotated data, and are enhanced by generating small affine deformations of the orig-
inal data in order to take into account slight viewpoint variations. Negative samples
are generated by randomly sampling regions around the annotated part. The features
used are a HOG like 4 x 4 concatenation of histogram of gradient orientations on lo-
cal sub-windows coded in 8 directions and weighted by the gradient magnitude. The
detector is learned using a linear kernel SVM.

The construction of the rejection test uses the same feature and kernel, but on
a binary discrimination of two subsets of hypotheses: 2, and §2,\f2, . The decision
threshold asserting that w;(X) = 0 when a hypothesis Y belongs to {2, is set by
fitting a generalized logistic function to the cumulative distribution. The test powers
Br(Y) are then computed accordingly.

The recognition performances have
been evaluated on two sequential testing
strategies: a random test, and the appli-
cation of the greedy policy (1). The max-

Fig. 3. Performances using several policies.

imum value of the probabﬂity of gOOd Mean accuracy (%)

recognition is 74% for this 11 class fine- [Scanpath length | 20 | 50 | 100] 150] 200

grained problem. A less refined prob- |Random policy |16.3[28.0[39.2[45.2[52.4
lem using 5 super classes (72067, 7307, |Greedy policy  |42.2|60.4|67.571.2|74.2

”Cliol”, ”ClioIl”, "Corsa”) gave 94.6% [Centralized policy 1.7

of accuracy.

To compare the approach, a central-
ized classification exploiting a compound feature concatenating the HOG features of
all parts and using a standard one vs. all multiclass SVM with a linear kernel was
computed and gave equivalent results (71.7%).

3.1 Possible improvements

The focus or search area depends on a low resolution basic-level categorical detection,
which lacks spatial precision. An alternative is to use local landmarks as local coordi-
nates or a strongly supervised global model [7]. The part descriptor can be improved
and made more discriminative (conv. net features?). Finally, the greedy policy used
to select the rejection tests may be replaced by a more global planning process with
look ahead strategy and trying to optimize more general costs than the number of
recruited rejection tests.
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