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1 Introduction

In this work we consider the challenging problem of human pose estimation
from a single image. This task serves as a crucial pre-requisite step to many
high level vision applications, for example human action recognition [13], and
natural human computer interfaces [22]. Therefore, it is among the most studied
problems in the field of computer vision.

The main difficulty of pose estimation is the weak local appearance evidence
for every single body part. While heads nowadays can reliably be detected, lo-
calization of general body parts such as arms, or legs remain challenging. Several
factors complicate detection: fore-shortening and self-occlusion of parts; differ-
ent clothing and light environments lead to variability in appearance; some parts
might just be a few pixels in size which makes it hard to encode them robustly.

Most work focuses on the main dimensions of the pose estimation problem:
use of discriminative appearance information ([19, 17, 18, 26, 27, 9, 8] and many
more) and stronger models for the spatial body configuration [21, 23, 17]. Exam-
ples of better appearance models are the local image conditioned features used
in [19], the use of mid-level representations via Poselets [11, 2, 17], or semantic
segmentation information to include background evidence [9, 25, 16, 3]. The spa-
tial model of [10] is a tree, a limitation that obviously does not reflect dependen-
cies in the human body, for example color relation between left and right limbs.
This has been addressed by introducing loopy versions [23] or regression onto
part positions directly [5, 12]. Another dimension is inference efficiency, richer
appearance features typically requires more computations, some approaches per-
form well but are slow. The same is true for changes in the graph, giving up the
tree structure usually results in more involved inference techniques. To speed
up inference in pose estimation models enabling the use of richer appearance
or graph structure methods like cascading [20] or coarse-to-fine search [19] have
been proposed.

In this work we propose the Fields of Parts (FoP) model; a re-formulation
of the human pose estimation problem. The FoP model offers a different view
on all three dimensions – appearance, structure, and inference. It is inspired by
the Pictorial Structures (PS) model, but has different semantics which lead to
interesting modeling possibilities. The main idea behind this model is simple:
the presence or absence of a body part at every possible location, orientation,
and scale of a body part is modelled using a binary random variable.
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Fig. 1. From Pictorial Structure models (left) to the Fields of Parts model (right). For
each body part in the PS model we introduce a field of binary random variables, one
for each of its states. When two body parts are connected by a pairwise factor (left)
we densely connect the corresponding fields (right). The binary variables 0/1 encode
absence or presence of a body part at its location and type (rotation).

The FoP model is built upon advances from three separate domains: efficient
inference for segmentation [15], parameter estimation with approximate infer-
ence [6, 7], and expressive PS models [27]. We report on modeling, technical,
and experimental contributions:

– A reformulation of the human pose estimation problem. This opens up new
modelling flexibility and provides a new viewpoint on this well-studied prob-
lem.

– An generalization of the inference algorithm from [15]. This makes it possible
to use efficient mean field inference in the FoP formulation.

– A new estimator that is tailored to pose prediction using a binary CRF
formulation.

– Experimentally, we demonstrate that the FoP model with the same set of
parameters as [27] achieves a performance increase of 6.0% on the LSP
dataset [14], novel variants improve this even further.

2 Fields of Parts

The flexible body part model of [27] serves as the starting point for our deriva-
tion. The authors of [27] propose to model each body part p as a random vari-
able Y p = (U, V, T ) with three values: (U, V ) for the position in the image I and
T ∈ {1, . . . ,K} a latent type variable. The idea of introducing T is to capture
appearance differences of a part due to fore-shortening, rotation, etc, while at
the same time increasing the flexibility of the body configuration. We gather all
possible states of Y p in the set Yp

2.1 Model

We parametrize the problem in the following way: For every part p and every
possible state in Yp we introduce a binary random variable Xp

i , i = 1, . . . , |Yp|.
Each such variable represents the presence Xp

i = 1 and absence Xp
i = 0 of a

part at its location, type, and scale in the image. We refer to the collection of
variables for a part Xp = {Xp

i }i=1,...,|Yp| as a field of parts. With X we denote
the collection of all variables for all parts.
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Model Setting Head Shoulder Elbow Wrist Hip Knee Ankle avg

Fields of Parts 83.1 76.5 55.2 29.0 74.8 70.3 63.7 64.7

Yang&Ramanan [27] 80.0 75.2 48.2 28.9 70.4 60.5 53.2 59.5
Yang&Ramanan [27] (single det.) 79.5 74.9 47.6 28.4 69.9 59.0 51.6 58.7

Pishchulin et al., [18] 88.0 80.6 60.4 38.2 81.8 74.9 65.4 69.9

Table 1. Comparison of pose estimation results on the LSP dataset. Shown are the
APK [27] results (observer-centric annotations [9]).

Given an image I and model parameters θ, we write the energy of a Gibbs
distribution as the sum of unary and pairwise terms

E(x|I, θ) =

P∑
p=1

|Yp|∑
i=1

Ψunary(xpi |I, θ) +
∑
p∼p′

|Yp|∑
i=1

|Yp′ |∑
j=1

Ψpairwise(x
p
i , x

p′

j |I, θ).

Note, that the neighborhood relationship is defined between different fields
p ∼ p′, for example wrist and elbow. Between any two neighbouring fields,

all pairs of random variables (Xp
i , X

p′

j ) are connected by a factor node. We
illustrate the resulting cyclic CRF graph in Figure 1 for the case of kinematic
chain connections p ∼ p′ and six body parts.

Local appearance of body parts is captured through the unary factors Ψunary.
Concretely, we use exactly the same log-linear factors as in [27] in order to make
the models comparable: HOG [4] responses ψ(I) and a linear filter θpunary of size
5× 5 at different scales of the image.

The important piece of the FoP model are the pairwise connections. Their
form needs to fulfill two requirements: encode a meaningful spatial configuration
between neighboring fields, and allow for efficient approximate inference. We
are inspired by the observation of [15]. In their work they show that mean field
inference in densely connected models with Gaussian pairwise potentials can
be implemented as a bilateral filtering. Since for this operation exist highly
optimized algorithms [1], the approximate inference is efficient. The pairwise
terms in the FoP model have the following form

Ψpairwise(x
p
i , x

p′

j |I, θ) =
∑
m

Lm(xpi , x
p′

j ) kp,p
′

m (fm(i, p; I, θ), fm(j, p′; I, θ); θ)

kp,p
′

m (f, f ′; θ) = exp

(
−1

2
(f − f ′ − µp,p′

m )T (Σp,p′

m )−1(f − f ′ − µp,p′

m )

)
.

The key observation is that this allows to encode the same spatial relation

between body part variables Xp
i and Xp′

i , as the PS model does for Y p and

Y p′
. This potential is a linear combination of Gaussian kernels km weighted by a

compatibility matrix L. The Gaussian kernel function k measures the influence
of two variables i, j on each other; it has a high value if variables i and j should
be in agreement.

To encode the same spatial relationship as PS models we use the 2D posi-
tions of the states i as features f(i, p; I, θ). The influence decreases exponentially
depending on the distance of two states i, j and the variance Σp,p′

m .
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Fig. 2. From left to right: Result from [27], part marginals, stick predictions, for
two positive results.

Note that a state i also includes the type/mixture component T . For every
part there are as many random variables at the same 2D location as we have
mixture components K in the model. For every type/type pair we could use
a different offset and variance. Again to enable comparison we implement the
choice made in [27].

2.2 Learning and Inference

Exact inference in the FoP model is unfortunately prohibitive due to the loopy
structure of the factor graph. We resort to approximate inference, and in par-
ticular to a mean field approximation.

We generalizes the results of [15] where there is no part connection relation-
ship p ∼ p′. In the mean field update step we can exploit the underlying structure
of the factor graph to perform bilateral filtering of the two affected neighboring
fields.

We use a structured maximum-margin estimator [24] to encourage the model
to fit parameters that lead to a low Average Precision of Keypoints (APK).

3 Experiments

We empirically test the proposed method with the standard benchmark dataset
of “Leeds Sport Poses” (LSP) [14].

Note that the described FoP model uses the same unary potentials and the
same features for the pairwise potentials as [27]. Also we use the same pre-
processing steps: clustering and assignment of the types on the training dataset.
Any performance difference of the two methods thus can be attributed solely to
the change in model structure, learning objective and inference.

The direct comparison using APK is reported in Table 1, some example
detections are depicted in Figure 2. We compare FoP to the PS counterpart and
observe that we obtain an improvement for every body part, while being on par
on “wrist”. The improvement in average APK is 5.2%. For all FoP results we use
the top prediction per image only, and have not implemented Non-Maximum-
Supression to retrieve multiple detections. The results of [27] when reporting only
the top scoring part are also included in the table, in this case we the performance
gain is 6.0%. The results increase over all body parts, most prominently on the
feet, for example more than 12% on ankles.
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