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Abstract. The deformable parts model (DPM) [1] is a successful detec-
tion model that continues to achieve state-of-the-art results in object de-
tection. While the model’s success is attributed to the deformable parts,
the proposed system has many other design choices such as the use of
multi-resolution HOG features, the sampling of parts from high energy
areas, the use of a mixture model, etc. Recently, there have been at-
tempts at analyzing the contribution of these design choices more closely
[2]. We delve further into this analysis, performing a study of the effects
of restricting the deformation model, the use of single-resolution filters
versus multi-resolution filters, and the application of energy “dropout”
while sampling parts. Our results indicate that a better performance can
be achieved with simpler cost-free deformation models.

1 Introduction

In [3], Dalal and Triggs proposed using Histograms of Oriented Gradients (HOG)
orientations as feature descriptors for human detection. The results from this
work showed that HOG features were reasonably successful at detecting humans
in complex backgrounds with variable appearance and lighting conditions. While
a HOG detector will generally capture a static shape appearance, significant
variations in appearance and pose are more challenging.

Felzenswalb, et al. [1] sought to address this with the introduction of a mix-
ture model to deal with strong pose variations (e.g. a horse head vs. a side-view
of a horse) and deformable parts to deal with a range of articulated poses (e.g a
side-view standing horse vs. a side-view rearing horse). Each component in the
mixture model uses a low-resolution root filter (based on the Dalal and Triggs
model [3]) and high-resolution part filters, to be able to detect objects in a range
of articulated poses. Despite the model’s popularity, few attempts have been
made at understanding which design choices contribute most to performance.

More recently, in [2], Divvala, et al. made the suggestion that part defor-
mation in DPM may not be as necessary as originally thought, where it can
be “turned off” and still yield detector performance comparable to the original
DPM. Instead of utilizing several deformable parts, a single part encompass-
ing the full extent of the object was used. The reported results indicate that
deformations are not as critical to performance as assumed.

We build on this work by carefully performing a set of experiments which
analytically deconstruct the DPM to understand better how its design choices
contribute to overall performance. In this work, we have observed a progression of
experimental results which give deeper understanding to which factors contribute
the DPM performance and to what degree. We show that better results can be
obtained by simply allowing parts to deform within a neighborhood at no cost.
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2 Analysis of the DPM

We conducted our research in phases to study the different aspects of the DPM
model, in order to tease out the effect of each on overall performance. The DPM
models in Figure 1 for class bicycle summarize our experimental design approach,
which is detailed in the following sections.

Fig. 1: Various configurations of DPM models for class bicycle used in experimentation: (1) original
DPM [4] model with deformation, (2) 1X+2X with “rigid” parts (deformation removed), (3) 1X+2X,
(4a) 1X+2X with dropout (shown in detail in (4b)) applied to low-energy regions, and (5) 1X+2X
with “jittered” parts (parts deform within a neighborhood at no cost).

Multi-resolution Rigid Models In the primary phase of our study, we
try to further the idea of “turning off’ part deformation as was done in [2]
and understand the impact of deformation on overall model performance. To
begin, we observed that the experiments conducted in [2] in fact do not disable
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deformations: instead of using several high resolution parts, the authors relied on
a single high resolution part whose spatial extent matches that of the root filter
yet that part is left free to deform with respect to the root1. We first reproduced
the experiment in [2]. Next, we ran a separate experiment where the effects of
deformation were entirely removed (Figure 1(3)).

Energy-Based Feature Selection We also investigated energy-based fea-
ture selection by applying dropout2 to each model component ((4a) and (4b)
in Figure 1). A dropout mask was created by greedily selecting the areas of
highest energy from the component’s root filter at twice resolution (with 80%
coverage). Defining regions of dropout in the 2X filter mimics more closely the
DPM [1] where parts cover the highest energy areas of the feature vector and
the remaining areas ignored.

Single Resolution Models In this phase, we ran experiments using both
a 1x (single) root filter and 2x (double) resolution root filter without any parts.
The motivation here is to understand the effect of the DPM’s [1] multi-scale
representation on detection performance.

Bounded Cost-Free Deformation In this phase of our study, we try to
further the idea of disabling the learning of a deformation model and understand
the impact on overall performance. We conducted a series of experiments where
the deformation parameters were not learned, but parts were rather allowed to
move at no-cost by varying degrees. Specifically we define a “jitter” parameter
j and allow parts to deform at no cost within their 2j + 1× 2j + 1 neighborhood
(measured in HOG bins). During both training and testing, parts simply select
their optimal placement according to location of maximum response, similar to
the idea of max-pooling. We allowed j to vary on {3, 2, 1, 0}. At j = 0, the parts
essentially become rigid as they are not allowed to deform: this can be seen in
Figure 1(2), where the deformation cost is set to infinity (cost is scaled black to
white, lowest to highest) as opposed to the case of j = 2, which can be seen in
Figure 1(5).

3 Results

The experimental analysis was performed using the the PASCAL VOC 2007
dataset [4] and and using the codebase from [5]. The results are summarized
in Table 1. In the original DPM model (row 1), the mAP was 32.3% for the
standard root and parts model (three components, eight parts) with deforma-
tion. Row 2 (1X+2X [2]) reproduces the experiment in [2] where a single high
resolution part whose spatial extent matches that of the root filter is used (yet
that part is left free to deform with respect to the root). We were able to confirm
the reported drop of approximately 5% mAP to 27.3% mAP. Row 3 (1X+2X)
shows our own version of the experiment in [2] where the deformation is by-
passed as intended: the nearly identical mAP of 27% likely indicates that the
unintended deformations in [2] are minimal. Row 4 (1X+2X-dropout) shows the

1
confirmed by correspondence with the authors of [2].

2
dropout is defined as HOG cells where features are zeroed out at train time.
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result obtained by applying feature selection via dropout: performance is very
similar to both rows 2 (1X+2X [2]) and 3 (1X+2X), indicating that feature
dropout doesn’t significantly impact performance. In each of these three experi-
ments part movement has been restricted, demonstrating that allowing parts to
move and deform bolsters overall performance.

Experiment aero bike bird boat botl bus car cat chair cow table dog horse mbike pson plant sheep sofa trn tv mAP

1 DPM v4 [2] 30.7 59.5 10.0 15.3 25.5 49.4 58.3 19.3 23.1 25.2 22.0 10.9 56.8 49.2 42.5 12.6 18.0 32.5 44.4 41.6 32.3

2 1X+2X [2] 25.9 46.8 9.7 13.8 18.6 42.8 39.8 13.0 17.1 21.1 16.4 10.3 55.3 42.6 36.2 11.5 16.3 27.7 42.4 38.2 27.3
3 1X+2X 25.8 52.4 5.2 14.5 17.7 41.4 51.3 13.9 16.6 20.6 16.8 2.5 53.2 41.8 35.1 11.4 15.5 25.5 42.5 37.0 27.0
4 1X+2X-dropout 25.3 53.1 9.8 14.4 17.6 40.5 51.2 14.6 15.9 21.3 16.5 3.0 53.5 42.1 35.2 10.7 15.7 24.1 42.6 35.9 27.2

5 1X 24.0 51.2 6.7 11.6 17.3 42.9 46.3 7.0 16.6 21.2 15.4 5.3 47.1 37.5 31.2 11.0 13.7 24.2 39.7 34.0 25.2
6 2X 21.5 39.1 1.8 10.0 10.2 39.7 41.7 5.9 10.5 13.6 15.1 4.9 51.7 35.3 31.0 9.9 9.6 20.3 36.9 25.9 21.7

7 1X+jitter pts-3 30.2 60.1 10.3 15.5 23.6 51.7 56.4 21.0 21.3 25.2 29.6 12.0 56.9 46.5 38.5 13.4 19.1 32.3 46.0 39.5 32.5
8 1X+jitter pts-2 30.0 60.5 10.2 14.3 24.5 49.5 57.8 22.4 22.8 25.4 28.3 11.5 58.0 47.7 41.8 13.3 19.9 35.4 46.3 40.0 33.0
9 1X+jitter pts-1 28.7 58.1 10.3 14.7 24.0 49.4 56.0 19.5 21.3 24.9 23.6 11.1 55.1 46.8 41.5 12.7 19.0 33.2 45.5 42.2 31.9
10 1X+jitter pts-0 22.1 53.1 9.5 14.9 18.7 41.9 50.5 14.6 16.3 21.4 17.5 6.5 52.0 40.8 35.6 11.1 15.7 25.6 40.8 36.8 27.3

Table 1: Deconstructing the DPM. Row 1: DPM. Row 2: Proposed method in [2] (DPM with a single
high resolution part) . Row 3: Our own version of [2] (less the unintended residual deformations).
Row 4: Applying dropout (keep only max energy features) to Row 3. Row 5: A single low-resolution
filter. Row 6: A single high resolution filter. Rows 7-10: Standard DPM where parts are allowed to
move at no cost within a local neighborhood.

The results in rows 5 and 6 clearly indicate that multi-resolution HOG mod-
els (rows 3 and 4) perform better than single resolution models, motivating
DPM’s current design. Interestingly, a low resolution filter (1X) outperformed
a higher resolution filter (2x) by 3.5% mAP, and was only 2% lower than the
multi-resolution models with deformation removed (rows 3 and 4). This result
suggests that simpler low-resolution detectors suffice for certain classes, and in
part, supports [2]’s finding that parts are not as significant as proposed in [1].

The third section of the Table 1 (rows 7−9) shows the results of allowing for
cost-free deformations within the 2j + 1× 2j + 1 of each part. Allowing 1 HOG
bin of jitter was only 0.4% less than the original DPM model (row 1 ’DPMv4’).
Allowing 2 HOG bins of jitter exceeded the original DPM result by a full 1%
mAP and 3 HOG bins by 0.5% mAP. Interestingly, the performance for j = 0
matches that of row 3 (1X+2X).

These experiments support the idea that high resolution parts are significant
if they are allowed to move, but do not require the presence of a trained de-
formation model. Note that Cross-validating the neighborhood jitter parameter
j per category should yield an mAP of 36.2%, assuming the best parameter is
selected per category: a very significant increase over the standard DPM [1].

4 Conclusions

To conclude, we have found that decoupling parts from deformation has interest-
ing consequences, including that parts alone become somewhat inconsequential
but are significant if allowed to move. More interestingly, we have found that the
absence of a learned deformation model outperforms the original DPM model [1].
We have also observed a clear case for multi-resolution models over the original
single resolution model of [3], regardless of deformation or parts.
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