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Abstract. In recent years there has been growing interest in describing
scenes using semantic attributes. While traditionally scenes have been
analyzed using global image features such as Gist, recent studies suggest
that humans often describe scenes in ways that are naturally character-
ized by localized image evidence. In particular, humans often describe
scenes by their functions or affordances, which are largely suggested by
the objects in the scene. In this paper, we show that the aggregated re-
sponses of a large collection of modern object detectors trained at the
web scale can be used to derive effective high-level features for scene
attribute recognition. On the SUN Attribute benchmark, these detector-
based features obtain 2-9% higher average precision than traditional
Gist, HOG2x2, self-similarity, and geometric context color histograms.

1 Introduction

In recent years, there has been increasing interest in describing objects and scenes
using semantic attributes [2], [3], [4], [7], [9]. Attributes are particularly appropri-
ate for characterizing scenes because scene categories can exhibit wide intra-class
variation, the scene space is continuous (i.e. there are smooth transitions between
categories), and a single image can contain multiple scene categories [8].

Traditionally, scenes have been analyzed using global image features such
as Gist [6] or HOG visual words [5], [10]. While global image features can be
used to recognize many types of scene attributes (e.g. degree of naturalness
or openness [6]), a large number of interesting scene attributes are not well
captured by global features. In particular, many scene attributes in the crowd-
sourced SUN Attribute database are more naturally characterized by localized
image evidence. For example, Patterson and Hays [8] found that humans often
describe scenes based on their functions or affordances, such as “camping” or
“studying/learning”. A strong cue for “camping” (defined as “either an actual
camp site, or scene in wilderness suitable enough for humans to make a tent
and/or sleep” [8]) would be the presence of a tent.

The core contribution of our paper can be summarized as follows. Motivated
by recent findings that humans often describe scenes by their functions or af-
fordances, which are largely suggested by the objects in the scene, we propose
leveraging open, web-scale object detector responses to improve scene attribute
recognition. We demonstrate the effectiveness of this simple idea on the standard
scene attribute benchmark [8].
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2 Method

We explore the hypothesis that since many scene attributes are characterized by
localized image evidence, recognition of scene attributes can be improved using
a large collection of object detectors trained at the web scale.

Inspired by a recent development in text understanding, Chen et al. [1] re-
cently introduced the Never Ending Image Learner (NEIL). NEIL is an itera-
tive, semi-supervised algorithm that learns objects and their relationships from
downloaded web images. In each iteration, only the most confident detections
and relationships are added to the knowledge base, a strategy the authors refer
to as “macro-vision”. Detectors are based on color HOG features. In this work,
we use the most recent collection of object detectors released by NEIL (as of
June 2014, this was the Dec. 2013 version), which consists of 8685 detectors
spanning 1190 unique object categories.

Let f.(I,w) denote the response of an object detector of category ¢ evaluated
in window w of an image I. We form a feature descriptor F' for image I that
concatenates the responses of all object detectors in the collection, max-pooled
over the image windows:

F[c]zmgxfc(l,w), c=1,...,D (1)

where F'[c] denotes the c*® component of the feature vector F' € R”, and D is
the number of object detectors in the collection.

In high dimensional feature spaces, the partial order statistics of a feature
descriptor are often more robust for classification and retrieval tasks than the
descriptor’s precise numeric values [11]. Following [11], we capture partial or-
der statistics by taking random subsets of the feature descriptor’s dimensions.
Specifically, we derive an ordinal feature representation of the detector response
vector F' as follows. Given a subset size K < D, generate m random ordered
subsets of size K of the dimensions in F (in general, larger m captures more
ordinal relationships but increases memory requirements as the transformed fea-
tures are larger). That is, each ordered subset 6 consists of K unique indices
from 1 to D: § € {1...D}¥. Denote by © the matrix formed by stacking all m
ordered subsets: © € {1...D}™* X Form an intermediate matrix Z € R™*X hy
looking up the entries in F' corresponding to the indices in ©:

Zli, j] = F[@i, j]] (2)
where ¢ and j are row and column identifiers. Next, let £ € N™ collect the
indices of the largest elements of each row in Z:

z[i] = argmax; Z[i, j] (3)
Each entry in  encodes the maximum rank information for the corresponding
random ordered subset #. The final ordinal feature representation x is a binary
output encoding of Z in which each scalar in Z is translated into a binary indicator
vector of length K. Hence, z € {0,1}™*%. An example of the ordinal feature
transform is illustrated in Figure 1.
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Fig. 1. Toy example of ordinal feature transform. An ordinal feature representation x
is derived from a vector of max-pooled object detector responses F' using partial order
statistics from random ordered subsets of the dimensions of F.

3 Experiments

We conducted experiments using the SUN Attribute database [8], which con-
tains over 14,000 scenes spanning over 700 categories. Attribute annotations are
sourced for each image individually instead of assumed the same for all images of
the same scene category. The 102 crowd-sourced scene attributes span materials,
surface properties, functions or affordances, and spatial envelope [6] properties.
Given a semantic attribute of interest, we train a linear SVM, setting the regular-
ization parameter C by five-fold cross-validation. For a direct comparison with
the SUN Attribute database baseline that uses global image features, we train
each attribute classifier independently and do not take advantage of possible
correlation cues.

Table 1 summarizes experimental results using the standard train and test
splits of the benchmark. We report results using both the ordinally transformed
features = and the original max-pooled detector responses F'. To our surprise,
we found that detector-based features perform better than any individual global
image feature baselined in the SUN Attribute database, including Gist (+7%),
HOG2x2 (+2%), self-similarity (+5%), and geometric context color histograms
(+9%). Applying the ordinal transform (K = 2 and m = 64k) provides only a
small improvement in accuracy.

To demonstrate that the information captured by the object detectors is
complementary to that captured by traditional global image features, we also
combined the two types of image evidence by a simple average. As Table 1 shows,
combining both types of image evidence enables higher accuracy than either type
by itself. In addition to the motivating function or affordance based attributes,
we found that detector-based features broadly outperform traditional global fea-
tures in recognizing scene attributes related to materials, surface properties, and
spatial envelope properties.

Table 2 shows sample qualitative results. Each row shows an image from
the SUN Attribute database, the most confident attributes predicted using the
linear SVMs trained on ordinally transformed detector response features, and
the ground truth annotation.
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Table 1. Average precision (AP) results on the SUN Attribute benchmark, standard
training and testing splits

Individual features
Global image features [8]
Geometric context color histogram 0.783
Gist 0.799
Self-similarity 0.820
HOG2x2 0.848
Web-scale object detector responses F 0.864
Web-scale object detector responses with ordinal transform x 0.868
Combination of multiple features
Combined normalized kernel of global image features (Geo. 4+ Gist + SS| 0.879
+ HOG) [8]
Combined normalized kernel of global image features (Geo. + Gist + SS|0.888
+ HOG) + Web-scale object detector responses with ordinal transform

Table 2. Example attribute predictions using web-scale object detector responses.

Predicted attributes that match the ground truth are highlighted in green.

Query image

Most confident attributes (in or-

der of confidence)

Ground truth attributes
ordered)

(un-

E playing,
§|camping, trees

vegetation, grass, foliage, leaves,

farming,  shrubbery,

camping, trees, grass, vegetation,
shrubbery, foliage, leaves, natural,
open area

open area, far-away horizon, nat-
ural light, dirt/soil, rugged scene,
sand, dry, concrete, dirty

driving,  biking, transporting
things or people, camping, fenc-
ing, natural light, dry, man-made,
open area, far-away horizon

glass, no horizon, natural light,
leaves, foliage, man-made, flow-
ers, shrubbery, semi-enclosed area,
vegetation

vegetation, foliage, leaves, brick,

glass, natural light, man-made,
open area, scmi-enclosed area, no

horizon

no horizon, praying, symmetrical,
mostly vertical components

vacationing/ touring, man-made,
enclosed area, no horizon

enclosed area, carpet, no

f|horizon, eating, paper, study-
8|ing/learning, electric/indoor

lighting, vinyl/linoleum, working,
reading

studying/learning, eating, play-
ing, carpet, tiles, rubber/plastic,
enclosed area, no horizon, clut-
tered space, soothing
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