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(b) Attribute view
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image feature projections: blue (d) multi-view embedding space

Figure 1. t-SNE visualisation of AwA: (A) Projection domain shift problem; (B)The instance
distance measured by TMV-HLP in our embedding space.

Recently, zero-shot learning (ZSL) has received increasing interest. The key
idea underpinning existing ZSL approaches is to exploit knowledge transfer via
an intermediate-level semantic representation which is assumed to be shared
between the auxiliary and target datasets, and is used to bridge between these
domains for knowledge transfer. The semantic representation used in existing ap-
proaches varies from visual attributes [12,2,16,8] to semantic word vectors [3,22]
and semantic relatedness [20]. However, the overall pipeline is similar: a projec-
tion mapping low-level features to the semantic representation is learned from
the auxiliary dataset by either classification or regression models and applied di-
rectly to map each instance into the same semantic representation space where
a zero-shot classifier is used to recognise the unseen target class instances with
a single known ‘prototype’ of each target class. In this paper we discuss two re-
lated lines of work improving the conventional approach: exploiting transductive
learning ZSL, and generalising ZSL to the multi-label case.

1 Transductive multi-class zero-shot learning

Two inherent problems exist in the conventional ZSL formulation. (1) projec-
tion domain shift problem: Since the two datasets have different and potentially
unrelated classes, the underlying data distributions of the classes differ, so do
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the ‘ideal’ projection functions between the low-level feature space and the se-
mantic spaces. Therefore, using the projection functions learned from the aux-
iliary dataset without any adaptation to the target dataset causes an unknown
shift/bias. This is illustrated in Fig. 1(A), where both Zebra (auxiliary) and Pig
(target) classes in AwA dataset share the same ‘hasTail’ semantic attribute, yet
with different visual appearance of their tails. Similarly, many other attributes
of Pig are visually different from the corresponding attributes in the auxiliary
classes. Figure 1(A-b) illustrates the projection domain shift problem by plot-
ting an 85D attribute space representation of image feature projections and
class prototypes: a large discrepancy exists between the Pig prototype and the
projections of its class member instances, but not for Zebra. This discrepancy in-
herently degrades the effectiveness of ZSL for class Pig. This problem has neither
been identified nor addressed in the zero-shot learning literature. (2) Prototype
sparsity problem: for each target class, we only have a single prototype which is
insufficient to fully describe the class distribution. As shown in Figs. 1(B-b) and
(B-c), there often exist large intra-class variations and inter-class similarities.
Consequently, even if the single prototype is centred among its class members in
the semantic representation space, existing ZSL classifiers still struggle to assign
the correct class labels to these highly overlapped data points – one prototype
per class simply is not enough to model the intra-class variability. This problem
has never been explicitly identified although a partial solution exists [19].

In addition to these inherent problems, conventional approaches to ZSL are
also limited in exploiting multiple intermediate semantic spaces/views,
each of which may contain complementary information – they are useful in dis-
tinguishing different classes in different ways. In particular, while both visual
attributes [12,2,16,8] and linguistic semantic representations such as word vec-
tors [17,3,22] have been independently exploited successfully, multiple semantic
‘views’ have not been exploited. This is challenging because they are often of
very different dimensions and types and each suffers from different domain shift
effects discussed above. Moreover, the exploitation has to be transductive for
zero-shot learning as only unlabelled data are available for the target classes.

In our work [9,7], we propose to solve the projection domain shift problem us-
ing a transductive multi-view embedding framework. Under our framework, each
unlabelled instance from the target dataset is represented by multiple views: its
low-level feature view and its (biased) projections in multiple semantic spaces
(visual attribute space and word space in this work). We introduce a multi-
view semantic space alignment process to correlate different semantic views and
the low-level feature view by projecting them onto a latent embedding space
learned using multi-view Canonical Correlation Analysis (CCA) [11,4]. Learn-
ing this new embedding space is to transductively (using the unlabelled target
data) aligns the semantic views with each other, and with the low-level fea-
ture view, thus rectifying the projection domain shift problem. Even with the
proposed transductive multi-view embedding framework, the prototype sparsity
problem remains – instead of one prototype per class, a handful are now avail-
able, but they are still sparse. Our solution to this problem is to explore the
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manifold structure of the data distributions of different views projected onto the
same embedding space via label propagation on a graph. To this end, we in-
troduce novel transductive multi-view Bayesian label propagation (TMV-BLP)
algorithm for recognition in [7] which combines multiple graphs by Bayesian
model averaging in the embedding space. In our journal version [9], we further
introduce a novel transductive multi-view hypergraph label propagation (TMV-
HLP) algorithm for recognition. The core of our TMV-HLP algorithm is a new
distributed representation of graph structure termed heterogeneous hypergraph.
Instead of constructing hypergraphs independently in different views (i.e. homo-
geneous hypergraphs [5,15,14]), data points in different views are combined to
compute multi-view heterogeneous hypergraphs. This allows us to exploit the
complementarity of different semantic and low-level feature views, as well as
the manifold structure of the target data to compensate for the impoverished
supervision available in the form of the sparse prototypes. Zero-shot learning
is then performed by semi-supervised label propagation from the prototypes to
the target data points within and across the graphs. Some results are shown in
Tab. 1 and Fig. 1(B).

Approach AwA (H [12]) AwA (O) AwA (O,D) USAA CUB (O) CUB (F)
DAP 40.5([12]) / 41.4([13]) / 38.4* 51.0* 57.1* 33.2([8,6]) / 35.2* 26.2* 9.1*
IAP 27.8([12]) / 42.2([13]) – – – – –

M2LATM [8] 41.3 – – 41.9 – –
ALE/HLE/AHLE [1] 37.4/39.0/43.5 – – – – 18.0
Mo/Ma/O/D [21] 27.0 / 23.6 / 33.0 / 35.7 – – – – –

PST [19] 42.7 54.1* 62.9* 36.2* 38.3* 13.2*
[23] 43.4 – – – – –
[24] 48.3** – – – – –

TMV-BLP[7] 47.1 – – 47.8 – –
TMV-HLP [9] 49.0 73.5 80.5 50.4 47.9 19.5

Table 1. Comparison with the state-of-the-art on zero-shot learning on AwA, USAA and CUB.
Features H, O and F represent hand-crafted, OverFeat and Fisher Vector respectively. Mo, Ma, O
and D represent the highest results in the mined object class-attribute associations, mined attributes,
objectness as attributes and direct similarity methods used in [21] respectively. ‘–’: no result reported.
*: our implementation. **: requires additional human interventions.

2 Transductive multi-label zero-shot learning

Many real-world data are intrinsically multi-label. For example, an image on
Flickr often contains multiple objects with cluttered background, thus requiring
more than one label to describe its content. And different labels are often cor-
related (e.g. cows often appear on grass). In order to better predict these labels
given an image, the label correlation must be modelled: for n labels, there are
2n possible multi-label combinations and to collect sufficient training samples
for each combination to learn the correlations of labels is infeasible. More funda-
mentally, existing multi-class ZSL algorithms cannot model any such correlation
as no labeled examples are available in this setting.

We propose a novel framework for multi-label zero-shot learning [10]. Given
an auxiliary dataset containing labelled images, and a target dataset multi-
labelled with unseen classes (i.e. none of the labels appear in the training set),
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we aim to learn a zero-shot model that performs multi-label classification on
the test set with unseen labels. Zero-shot transfer is achieved using an inter-
mediate semantic representation in the form of the skip-gram word vectors [18]
which allows vector-oriented reasoning. For example, V ec(‘Moscow′) is closer to
V ec(‘Russia′) + V ec(‘capital′) than V ec(‘Russia′) or V ec(‘capital′) only. This
property will enable zero-shot multi-label prediction by enabling synthesis of
multi-label prototypes in the semantic word space.

Our framework has two main components: multi-output deep regression (Mul-
DR) and zero-shot multi-label prediction (ZS-MLP). Mul-DR is a 9 layer neural
network that exploits convolutional neural network (CNN) layers, and includes
two multi-output regression layers as the final layers. It learns from auxiliary
data the mapping from raw image pixels to a linguistic representation defined
by the skip-gram language model [18]. With Mul-DR, each test image is now
projected into the semantic word space where the unseen labels and their combi-
nations can be represented as data points without the need to collect any visual
data. ZS-MLP addresses the multi-label ZSL problem in this semantic word
space by exploiting the property that label combinations can be synthesised. We
exhaustively synthesise the power set of all possible prototypes (i.e., combina-
tions of multi-labels) to be treated as if they were a set of labelled instances in the
space. With this synthetic dataset, we are able to propose two new multi-label
algorithms – direct multi-label zero-shot prediction (DMP) and transductive
multi-label zero-shot prediction (TraMP). However, Mul-DR is learned using the
auxiliary classes/labels, so it may not generalise well to the unseen classes/labels
(projection domain shift problem, as discussed in the previous section). To over-
come this problem, we further exploit self-training to adapt Mul-DR to the
test classes to improve its generalisation capability. The experimental results on
Natural Scene and IAPRTC-12 in Fig 2 show the efficacy of our framework for
multi-label ZSL over a variety of baselines. For more details, please read our
paper [10].
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Figure 2. (A) Comparing different zero-shot multi-label classification methods on Natural Scene
and IAPRTC-12.So smaller values for all metrics are preferred. (B) Examples of ML-ZSL predictions
on IAPRTC-12. Top 8 most frequent labels of landscape-nature branch are considered.
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