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Abstract. In this paper we aim for object classification and segmenta-
tion by attributes. Where existing work considers attributes either for
the global image or for the parts of the object, we propose, as our first
novelty, to learn and extract attributes on segments containing the entire
object. Object-level attributes suffer less from accidental content around
the object and accidental image conditions. As our second novelty, we
propose joint learning for simultaneous object classification and segment
proposal ranking, solely on the basis of attributes. This naturally brings
us to our third novelty: object-level attributes for zero-shot, where we
use attribute descriptions of unseen classes for localizing their instances
in new images and classifying them accordingly. Results on the Caltech
UCSD Birds, Leeds Butterflies, and an a-Pascal subset demonstrate that
1) extracting attributes on oracle object-level brings substantial benefits
i1) our joint learning model leads to accurate attribute-based classifica-
tion and segmentation, approaching the oracle results and 4ii) object-
level attributes also allow for zero-shot classification and segmentation.
We conclude that attributes make sense on segmented objects.

1 Introduction

The goal of this paper is object classification and segmentation using attributes.
Representing an image by attributes [7,8,10] like big ear, trunk, and gray color
is appealing when examples are rare or non-existent, feature encodings are non-
discriminative, or a semantic interpretation of the representation is desired. Con-
sequently, attributes are a promising solution for many current challenges in
computer vision [4,9]. Different from existing work, which computes object at-
tributes either on the entire image [1,10,12] or on parts of the object [3,5,6,8],
we propose to learn the best possible segment that contains the entire object
and compute all attributes on this segment. Inspired by Akata et al. [1], who
adapt the model of [15] and propose attribute embedding learning for supervised
and zero-shot object classification, we also optimize attribute learning for object
classification, including the challenging zero-shot setting. However, we observe
that attributes most often reflect object level properties, e.g. that an antelope
has a pointy snout. Hence, reasoning these attributes pointy snout on the object
segments instead of the whole images is more intuitive and accurate, see Fig. 1.

* The full paper is accepted for the European Conference on Computer Vision, 2014.
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(a) (b) (c)
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Fig. 1. Attributes make sense on segmented objects. Illustration of different level
of attributes: (a) Considering the full image, one can only expect to describe generic
attributes that apply to the whole scene. (b) When localizing attributes, one faces the
problem that not all attributes can be localized. Partial occlusions, small scales, or
uncommon viewpoints might reduce the visibility of a particular attribute. (c) Object-
level attributes are constrained on segmented objects, allowing for description of object
specific attributes, and furthermore helping to suppress irrelevant background signal.

2 Object-level Attributes

Given an image x, our classification function f is defined as follows:

f(z) = argmax max F(z,y), (1)
yeY zE€Z(x)
where 7z is a latent variable, Z(z) indicates a set of segment proposals for image
x, and F(z,y) is a compatibility function between segment z and label y. This
function returns the label with best score over all segments. We do not assume
the object bounding box or object segmentation is known at prediction time.

Attribute embedding. We follow the label and attribute embedding ap-
proaches from [1,15], where each class label y is embedded in the m-dimensional
space of attributes by ¢(y) € R™. While [1, 15] embed the full image features,
we embed the visual features of a segment z only with 6(z) € R%. In this work
we use Fisher vector [13] for this visual embedding. The compatibility function
F(z,y) is defined as:

F(z,y: W, ¢) = 0(2) W(y), (2)

where W € R%*"™ is the model parameter matrix to learn. We stack the attribute
embeddings of each class ¢(y) into an embedding matrix @ for all classes.

We assume there is a collection of training images {(x;,v;, z:)}X;, in which
each image x; has a ground truth label y; and a ground truth object segment z;.
There exists a mapping from attributes to classes ¢4, which defines the relevant
attributes for each class. For learning we employ structured risk minimization,
using a ranking objective built upon [1,2,15]. The loss function of a ground-truth
image/label /segment triplet (z;,y;, z;) for a label y, is defined as:

e(yvzhyia*ri) = zénz%}m()A(Z’yyyz’Zl) + F(Z7y) - F(ZZ’yZ) (3)
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The A function, which determines the margin, is defined as:

1-0(z,2;) ify=uy,
1 otherwise,

A(Z7yvzi7yi) = { (4)

where O(z, z;) is the intersection over union (IoU) between two segments. Similar
to [1,15], we define the empirical risk R(W, ) as a weighted ranking loss over /.

Fully supervised learning. In the fully supervised case, where we have
visual examples from all classes, we minimize the following regularized objective:

A 2 M A2
win SIWIP + 5112 — 24| + ROV, 9), )

where A and p are trade-off parameters between the empirical risk and the
regularization. Regularizing towards the pre-defined class-to-attribute encoding
(& — @A) allows us to exploit this high-level semantic prior. This could be par-
ticularly beneficial when just a few examples per class are available.

Zero-shot learning. In the setting of zero-shot classification, visual training
examples are given only for a subset of the classes, while evaluation is performed
on a disjoint set of the classes. In this case the attribute embedding is fixed to
the existing mapping ® = #4, and Eq. 5 reduces to:

A 2 A
min o |[WI" + R(W, 7). (6)

To efficiently sovle the problem of maximization over latent segments in Eq.
1 and Eq. 3, we make use of the codemaps framework [11].

3 Experiments

We conduct our main experiments on three datasets: the Caltech UCSD Birds
2011 dataset, the Leeds Butterfly dataset and a subset of the a-Pascal [7] dataset
(a-Pascal++). For visual features we use the Fisher vector [13] with different
GMM codebook size k, computed on dense RGB-SIFT [14] extracted every 2
pixels and at multiple scales, and projected to 80 dimensions using PCA. We
use two measures for evaluation: the mean class accuracy (MCA), where for
each class the top-1 accuracy is computed and averaged over all classes, and the
mean class accuracy over correctly segmented objects (MSQO). MSO is computed
similar to MCA, except that a prediction is considered correct only if both the
label is correct and the overlap of the latent segment with the ground-truth
segmentation meets the Pascal VOC criterion (IoU greater than 50%).
Object-level attributes on latent segments. In this experiment we com-
pare a full-image feature embedding to using an embedding of an oracle provided
bounding box or segment. We train the model with the ALE framework [1]. We
also evaluate the ability of our approach inferring the object segment as a latent
variable in the model and to classify the segmented objects using attributes. We
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Dataset Codebook Entire image Oracle bbox Oracle segment Object-level attributes
MCA MCA MCA MCA MSO
k=16 13.8 25.8 43.9 35.2 29.9
CUB-2011
k =256 214 36.4 52.9 39.2 35.5
Butterflies k=16 83.8 96.9 99.1 96.4 95.5
a-Pascal++ k = 256 30.6 33.6 40.2 35.0 24.7

Table 1. Object-level attributes on latent segments. We compare the perfor-
mance of ALE [1] using full-image embeddings with oracle bounding box/segment
embeddings, and our proposed learning object-level attributes on latent segments.

Dataset Codebook Entire image Object-level attributes
MCA MCA MSO

CUB-2011 k=16 11.3 15.7 12.4
Table 2. Object-level attributes for zero-shot classification on CUB-2011.
Learning attributes on latent segments is able to not only improve the zero-shot clas-
sification, but also return the segmentations of objects that belong to unseen classes.

present the aggregated results in Table 1. We observe that by using oracle object
segments we obtain large increase accuracy over using full images, as well as ora-
cle bounding boxes. These numbers serve as an upper bound of the classification
accuracy that we may obtain by using latent segments. Our approach learning
attributes on latent segments improves the accuracy over full-image results of [1]
by around 4-21%. The quality of our inferred segmentations is quite good, since
the MSO is resonablely close to MCA. Moreover, we observe that for a larger
codebook the discrepancy between accurate prediction and accurate prediction
with accurate segmentation is smaller.

Comparison with part-localized attributes. To compare our approach
with a recent part-localized attribute model, we also conduct an experiment on
a subset of CUB-2011: five categories consisting of different species of warblers.
We follow the same experimental protocol as [6]. Our model of learning object-
level attributes on latent segments scores 65.8% accuracy using a codebook of
GMM k=16, and using full image embedding scores 42.2%, while the localized
attribute model [6] reports ~55%.

Object-level attributes for zero-shot. In this experiment we perform
zero-shot learning, which allows for simultaneous classification and segmentation
of the object of interest. We experiment on the CUB-2011 dataset, using the same
150 train classes and 50 test classes as in [1]. We present the numberical results
in Table 2. It shows that we improve the zero-shot classification accuracy, while
returning the segmentations of objects that belong to classes we have not seen
before.

We conclude that our joint learning with object-level attributes leads to
accurate classification and segmentation. It also improves zero-shot classification,
allowing object segmentation for unseen classes.
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