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Abstract

Maximum a posteriori (MAP) inference in Markov Ran-
dom Fields (MRFs) is an NP-hard problem, and thus re-
search has focussed on either finding efficiently solvable
subclasses (e.g. trees), or approximate algorithms (e.g.
Loopy Belief Propagation (BP) and Tree-reweighted (TRW)
methods).

This paper presents a unifying perspective of these ap-
proximate techniques called “Decomposition Methods”.
These are methods that decompose the given problem over a
graph into tractable subproblems over subgraphs and then
employ message passing over these subgraphs to merge the
solutions of the subproblems into a global solution. This
provides a new way of thinking about BP and TRW as suc-
cessive steps in a hierarchy of decomposition methods. Us-
ing this framework, we take a principled first step towards
extending this hierarchy beyond trees. We leverage a new
class of graphs amenable to exact inference, called outer-
planar graphs, and propose an approximate inference algo-
rithm called Outer-Planar Decomposition (OPD).

OPD is a strict generalization of BP and TRW, and con-
tains both of them as special cases. Our experiments show
that this extension beyond trees is indeed very powerful –
OPD outperforms current state-of-art inference methods on
hard non-submodular synthetic problems and is competitive
on real computer vision applications.

1. Introduction

A number of vision problems can be formulated as dis-
crete labelling problems, e.g., segmentation, geometric la-
belling, name-face association and stereo. Markov Random
Fields (MRFs) provide natural frameworks for modelling
and solving these labelling problems, and thus the maxi-
mum a posteriori (MAP) inference in MRFs is of funda-
mental importance to vision researchers. Specifically, given
a set of discrete random variables X = {X1, X2, . . . , Xn}
(s.t. Xu ∈ L = {1, 2, . . . , k}) and a graph G = (V, E) de-
fined over these variables, the goal of MAP inference is to
minimize a real-valued energy function associated with this
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Figure 1: Decomposition Methods: BP and TRW can be seen as
successive steps in a hierarchy, and OPD is a strict generalization.

graph, i.e.:

X ∗ = argmin
X∈L

E(X ) (1a)

= argmin
X∈L

∑
u∈V

Eu(Xu) +
∑

(u,v)∈E

Euv(Xu, Xv), (1b)

where the first termEu(·) is called the node or unary energy,
and the second term Euv(·, ·) is called the edge or pairwise
energy. An equivalent way of writing this problem, which
will be useful later, is in terms of boolean variables Y =
{Yu,Yuv | u ∈ V, (u, v) ∈ E}, where Yu = {Yu:s | s ∈
L},Yuv = {Yuv:st | s, t ∈ L}.

argmin
Y∈M(G)

∑
u∈V,s∈L

Eu(s) · Yu:s +
∑

(u,v)∈E,s,t∈L

Euv(s, t) · Yuv:st

(2)

M(G) =

Y
∣∣∣∣∣

∑
s∈L Yu:s = 1, ∀u ∈ V∑

t∈L Yuv:st = Yu:s, ∀(u, v) ∈ E , s ∈ L
Yu:s ∈ {0, 1}; Yuv:st ∈ {0, 1}


(3)

Hardness. This problem is known [32] to be NP-hard for
arbitrary G,E(X ), and thus research has focussed on 1)
finding efficiently solvable subclasses and 2) approximate
inference algorithms for the general case.
Exact Subclasses. Trees [26] were the first known struc-
tures on which MAP could be computed efficiently via
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Pearl’s Belief Propagation algorithm. For 2-class prob-
lems, exact inference can be efficiently performed via max-
flow/min-cut if the energies are submodular [2, 11, 18].
More recently, Schraudolph and Kamenetsky [30] have de-
veloped on previous techniques in statistical physics [15,
22], and networks [31] to show that exact efficient inference
is possible in planar Ising models with min-cut techniques
even when the energies are non-submodular.
Approximate Inference. Attempts at approximate infer-
ence in general graphs have resulted in two promising tech-
niques: 1) a straightforward application of BP to graphs
with loops (Loopy BP) and 2) tree-reweighted (TRW) meth-
ods [16, 21, 35] that first decompose the problem onto trees
and then obtain (approximate) global solutions via message
passing schemes.
Decomposition Methods. One unifying perspective of
these different approximate techniques is to think of them
all as “Decomposition Methods”. These are methods that
decompose the given problem over a graph into tractable
subproblems over subgraphs and then employ message
passing over these subgraphs to merge solutions. In Loopy
BP, these subgraphs are individual nodes and their markov
blankets and the message is the min-marginal. For all three
of the TRW methods: TRW-T [35], TRW-S [16], TRW-
DD1 [21], these subgraphs are trees contained in the graph.
In TRW-T,S these messages are min-marginals, while in
TRW-DD these message are derived from MAP states on
these trees. When viewed from the prism of this representa-
tion, BP and TRW can be seen as successive steps in a hier-
archy of decomposition methods, and the key motivation of
this paper is easy to understand – can we make these sub-
problems larger while still staying tractable? Fig. 1 shows
an illustration.
Contributions. In this work, we leverage a class of graph
structures more general than trees yet still amenable to exact
inference, called outer-planar graphs, and propose a new ap-
proximate inference algorithm called Outer-Planar Decom-
position (OPD). OPD follows the decomposition paradigm
introduced above, i.e., it first decomposes an energy func-
tion into energies over outer-planar graphs, and then use a
message passing algorithm to merge these solutions. OPD
is a generalization of tree-based methods and BP. In fact,
for particular choices of outer-planar graphs and message
passing schemes OPD reduces to each of the TRW meth-
ods (TRW-T, TRW-S, TRW-DD) and BP. Our experiments
show that this extension beyond trees is indeed very power-
ful – OPD outperforms current state of art inference meth-
ods (TRW, QPBO and BP) on hard non-submodular syn-
thetic problems, and is competitive on real vision applica-
tions and standard benchmarks. In addition, we introduce
to the vision community certain results well-known in the

1Komodakis et al. [21] refer to their method as DD-MRF, but for the
sake of a common notation we call their technique TRW-DD in this paper.

combinatorics and graph theory literature regarding outer-
planar graphs and finding outerplanar subgraphs within ar-
bitrary graphs. On a broader scope, we suggest that topo-
logical aspects of graphs are fertile grounds for improving
and gaining a better understanding of inference in MRFs.

2. Relations to Previous Work
Tightening tree-decompositions. A number of works have
proposed ways to improve tree-based formulations, whether
working directly off the graph or via the LP relaxation of
the integer programming formulation of MAP and its La-
grangian dual. As an extension of their TRW-T work, Wain-
wright et al. [35] suggested that hyper-trees could be used
instead of trees to get progressively tighter bounds on the
Lagrangian dual. Sontag and Jaakkola [33] suggest tighten-
ing the TRW approximation by finding a more accurate (or
tighter) outer bound of the marginal polytope than the lo-
cal polytope approximation of TRW methods. Komodakis
and Paragios [19] work with a family of tighter relaxations
called cycle-relaxations that is based on the idea of “repair-
ing inconsistent cycles”. Sontag et al. [34] have proposed
tightening the standard relaxation via cluster-based LP re-
laxations, where local consistency is achieved between clus-
ter marginals. More recently, Komodakis and Paragios [20]
have used hypergraph decompositions to get tighter bounds
on the Lagrangian dual. Interestingly, while their method
is general enough to allow for any hypergraph, the spe-
cific decomposition choices in their work are in fact con-
tained in the class of outer-planar graphs. Werner [36, 37]
showed that the standard TRW-LP relaxation can be im-
proved by adding short cycles, and suggested that adding
more complex tractable subproblems may help. We believe
outer-planar graphs provide a good starting point. One of
the goals of this paper is to evaluate the behaviour and im-
provement of these relaxations when using structures that
are topologically more complex than trees.

It is also worth mentioning the work of Globerson and
Jaakkola [8], who generalized some of the ideas of TRW-
T [35] from trees to planar Ising models (which allow for
the efficient computation of the partition function in closed
form). At a high level, the philosophy of their approach (i.e.
decomposition into tractable subproblems) is similar to the
one presented in this paper. However, while their goal is to
approximate the log-partition-function, we focus on MAP
inference, and the actual techniques developed in the two
papers are quite different.
Topology or parameters? Many works in vision have fo-
cussed on finding subclasses of energies that are amenable
to exact efficient inference, e.g. boolean submodular ener-
gies [18], multi-label submodular energies [28], convex pri-
ors over a linearly ordered label set [12]. The goal of this
paper is to explore the role of topological aspects of graphs,
without imposing constraints on the energies. We note that



(a) Outer-planar graphs. (b) Non-outer-planar graphs.

Figure 2

recent works [13, 14] have begun to explore these issues.
Organization of paper. The rest of this paper is organized
as follows: §3 introduces outer-planar graphs and related
theoretical properties; §4 presents our approach (OPD); §5
shows results on synthetic energies and real applications;
Finally, §6 concludes with discussions.

3. Outer-Planar Graphs

Outer-Planar graphs. Outer-planarity is a notion from
classical graph theory. Outer-planar graphs are a sub-class
of planar graphs – they allow a planar embedding (drawing)
in which all nodes lie on an external unbounded face (i.e.
are “accessible” from the outside without crossing edges).
An alternate definition is sometimes more intuitive. A
graph G = (V, E) is outer-planar iff the modified graph
Gc = (V ∪ {o}, E ∪ {(o, v) : v ∈ V}) formed by adding an
extra node o and connecting it to all nodes in G is planar.
Fig. 2 shows some examples of outer-planar graphs. Outer-
planar graphs are a strict generalization of trees and forests,
i.e., all trees and forests are outer-planar, but all outer-planar
graphs are not trees/forests. The most popular graph in vi-
sion, the grid-graph, is planar but not outer-planar.
Graph Covering. The first task in any decomposition
method is to find a set of subgraphsH = {Gi(Vi, E i) : i ∈
I} that “cover” the graph G (i.e., ∪Vi = V and ∪E i = E).
In the case of TRW methods, a typical choice is a collection
of spanning trees.2 However, while all spanning tree sub-
graphs ofG contain the same number of edges, all spanning
outer-planar subgraphs do not. Thus, it becomes interesting
to ask if we can find “densest” outer-planar subgraphs in
G. Unfortunately, the problem of finding maximum outer-
planar subgraphs in a general graph is NP-complete [38] but
effective heuristics have been proposed [4, 27]. Another in-
teresting question to ask is – how many such subgraphs are
required to cover G?
Outerthickness and Arboricity. The outerthickness of a
graph Θo(G) is defined as the minimum number of outer-
planar subgraphs Gi = (Vi, E i) of G such that the union
of all the subgraph node/edge sets is equal to the node/edge
set of G (i.e., ∪Vi = V and ∪E i = E). The equivalent
definition for trees is arborocity, i.e., the minimum number
of trees required to cover G. Arboricity and outerthickness
of G are relevant for us because they denote the minimum
number of subgraphs on which we would need to perform
exact inference.

2Monotonic chains were used in TRW-S [16] for efficiency.

(a) Planar Delaunay (b) OP G1 (c) OP G2

(d) Planar Grid Graph (e) OP G1 (f) OP G2

(g) K7 (h) OP G1 (i) OP G2 (j) OP G3

Figure 3: Example outer-planar graph decompositions.

There are several interesting results known about out-
erthickess. It is well known that an outer-planar graph on
n vertices can have at most 2n − 3 edges. Thus one obvi-
ous lower bound is Θo(G) ≥ d |E|2n−3e. For general graphs,
even computing outerthickness is conjectured to be NP-
hard [23]. However, for several classes of graphs including
complete graphs and planar graphs, the results are known.
For complete graphs with n vertices, the outerthickness is
Θo(Kn) = dn+1

4 e, except forK7, where Θo(K7) = 3 [10].

It is worth mentioning that a long-standing conjecture of
Chartrand [3] was recently proven by Gonçalves [9], which
states that the outerthickness of planar graphs is two. This
result is particularly powerful for vision researchers, be-
cause it means that for typical vision applications (work-
ing with planar MRFs: grid or superpixel-adjacency) we
require as few as two outerplanar subgraphs to cover G.

To the best of our knowledge, there exists no actual im-
plementation that is guaranteed to decomposeG into Θo(G)
number of outer-planar subgraphs, even when the theo-
retical result is known (e.g., planar or complete graphs).
Greedy heuristics are used for this purpose [4, 27]. For ex-
ample, a maximal outer-planar subgraph Gi is created by
finding a spanning tree and adding edges one at a time till no
more edges can be added without violating outerplanarity
(which can be easily tested [24]). Then a graphG′ = G−Gi

is created by removing the edges ofGi from theG and find-
ing a new maximal outerplanar graph in G′. The process is
repeated until all edges of G are covered. We implemented
some of these heuristics. For planar graphs, our heuristics
are able to find a 2-subgraph decomposition surprisingly of-
ten (> 95%), and never found more than a 3-subgraph de-
composition in our experiments. For grid graphs, we show
a deterministic 2-subgraph decomposition in Fig. 3, which
we call a 2-comb decomposition.
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Figure 4: OPD decomposes the energy minimization problem over a general (non outer-planar) graph (K4) into subproblems over outer-
planar subgraphs. Exact inference on these outer-planar graphs is then performed. Finally a message passing scheme (§4) is used over
these outer-planar subgraphs to compute (approximate) global solutions.

4. Outer-Planar Decomposition
In this section, we develop our proposed approximate in-

ference algorithm – Outer-Planar Decomposition. OPD fol-
lows the decomposition paradigm introduced before (§1),
i.e., it first decomposes an energy function into energies
over outer-planar graphs, performs exact inference over
these outer-planar graphs, and then uses a message passing
algorithm to merge these solutions.

Specifically, let O = {O1, . . . , Op} be the collection of
outer-planar graphs that cover G. Our analysis does not re-
quire these subgraphsO to be spanning, and let us associate
each subgraph Oi with its own set of variables (X i ⊆ X or
Yi ⊆ Y), node energies θi

u and edge energies θi
uv . In ad-

dition, we define O(u),O(uv) to be the set of outer-planar
graphs that contain node u and edge (u, v) respectively. We
decompose the original energy function E(X | θ) into a
collection of energies {E(X i | θi)} defined over each of
these outer-planar subgraphs Oi s.t.:∑

i∈O(u)

θi
u = θu and

∑
i∈O(uv)

θi
uv = θuv (4)

=⇒ E(X | θ) =
p∑

i=1

E(X i | θi) (5)

This can be easily satisfied by distributing the node and edge
energies “evenly”, i.e., θi

u = θu

|O(u)| ,θ
i
uv = θuv

|O(uv)| . This
decomposition is pictorially shown in Fig. 4.
Exact Inference in Outer-planar MRFs. For the rest of
this discussion, we assume that there exists a black-box al-
gorithm (X i∗, θ̃i) = B(θi, Oi) that takes as input MRF
parameters θi over an outer-planar graph Oi, and returns
the MAP states X i∗ and min-marginals θ̃i. This black-
box algorithm forms the core computational element in our
message passing algorithms. Outer-planar graphs have low
treewidth (=2), and thus the junction tree algorithm is an
attractive option. More discussion regarding OPD and low
treewidth models can be found in §6. For our experiments,
we use the publicly available planar Ising inference engine
of Schraudolph and Kamenetsky [30], which is an efficient

large-scale implementation capable of handling millions of
nodes. For details, please see our extension [1] to a dynamic
version of this algorithm that also efficiently computes min-
marginals for outer-planar graphs. To give an idea of speed,
our implementation takes just under 5 seconds to compute
min-marginals on a 1000 node outer-planar graph.

Thus, we have now decomposed our original intractable
energy minimization problem into energies over tractable
outer-planar subgraphs. Next, we develop message passing
algorithms that operate over these subgraphs.

4.1. OPD-MP: Generalization of BP

We start with the simplest message passing that general-
izes the classical max-product BP algorithm and is in part
motivated by work of Duchi et al. [5], who showed how a
max-product message passing scheme could be constructed
over subnetworks in a graph. This message passing scheme
works in two phases. First, each subgraph i computes a
min-marginal-based message (δi→A

u:s ) that represents the be-
lief that a nodeXi

u takes state s. These messages are passed
to a global accumulator A. In the second phase, the accu-
mulator sends back a message (δA→i

u:s ) to each subgraph i,
which represents the sum of beliefs of all other subgraphs.
For ease of notation, we use vector forms of these messages
(δA→i

u = {δA→i
u:1 . . . δA→i

u:k }). The procedure is shown in
Alg. 1. The intuition behind these messages is simple – af-
ter the initial decomposition of energies, different subgraphs
might assign different states to the same variable Xu. The
goal then is to force them to agree on this assignment, by in-
corporating the accumulated beliefs. It is not difficult to see
that OPD-MP reduces to regular BP for a particular choice
of subgraphs (a collection of star-graphs centered at each
node in a factor-graph representation).

4.2. OPD-DD: Generalization of TRW-DD

OPD-DD uses the message passing scheme introduced
by Komodakis et al. [20, 21], and is based upon dual de-
composition ideas from the optimization literature. Con-
ceptually, this is a different scheme than the previous one



Initialize δA→k
v = 0, ∀v ∈ Vk, k ∈ O(v)

Initialize λk
uv = θk

uv, ∀(u, v) ∈ Ek, k ∈ O(uv)
while Stopping criteria not met do

1. Solving Subproblems: for i = 1 to p do
for u ∈ Vi do

λi
v = θi

v + δA→k
v , ∀v ∈ Vi \ u (6)

λi
u = θi

u (7)

δi→A
u:s = min

X i∈L;Xi
u=s

E(X i |λi) (8)
end

end
2. Message Passing:

δA→i
u =

∑
j 6=i

δj→A
u , ∀ı ∈ {1, . . . , k} (9)

end
Algorithm 1: OPD-MP.

because it only uses the MAP states from the subgraphs to
construct messages, and has interesting resource allocation
interpretations [20, 21]. The procedure is shown in Alg. 2.

It can be easily shown that OPD-DD corresponds to a
projected subgradient descent algorithm for solving the fol-
lowing Lagrangian dual problem F({λi}):

max
{λi}∈Λ

F({λi}) =
p∑

i=1

F i(λi) (10)

F i(λi) = min
X i

E

(
X i | (θi + λi)

)
where, (11)

Λ =
{
{λi} :

∑
i∈O(u)

λi
u = 0,

∑
i∈O(uv)

λi
uv = 0

}
(12)

The above problem can be seen as a generalization of
TRW-DD [21]. In fact, since trees are a subset of outer-
planar graphs, OPD-DD reduces to TRW-DD for a particu-
lar decomposition choice (when all Oi are chosen as trees).
In addition, we state a simple result that can be derived from
the work of Komodakis et al. [20]: When the multipliers αt

satisfy limt→∞ αt = 0,
∑

t αt = ∞, OPD-DD converges
to the global optimum of the Lagrangian dual. Also, at each
iteration, F({λi}) provides a valid lower bound on the en-
ergy minimization problem.

5. Experiments
We now present experiments to compare the perfor-

mance of OPD with current state of art methods. We tested
OPD on the following applications: gender-face assign-
ment, multiclass object labelling and optical flow. In ad-
dition, we also present results on synthetic energies, where
we can control various parameters (e.g., the degree of non-
submodularity of energies) to see how OPD behaves with
changes in these parameters. We compare OPD with TRW-

for (t = 1 to∞; Until stopping criteria met) do
1. Reprameterization:
for i = 1 to p do

(Yi∗, θ̃i) = B(θi, Oi) (13)end
2. Averaging:
for i = 1 to p do

λi
u = αt

(
Y ∗u −

∑
i∈O(u) Y

∗
u

|O(u)|

)
(14a)

λi
uv = αt

(
Y ∗uv −

∑
i∈O(uv) Y

∗
uv

|O(uv)|

)
(14b)

θi
u+ = λu; θi

uv+ = λuv (14c)end
end

Algorithm 2: OPD-DD.

S [16], BP and QPBO [29], using implementations pro-
vided by authors. In case of non-submodular problems,
when QPBO leaves nodes unlabelled, we use the following
heuristic – we set labelled nodes to the states returned by
QPBO, and create a smaller energy minimization problem
on the unlabelled nodes. We then solve this smaller problem
with TRW-S, and refer to this heuristic as QPBO+h.
Synthetic Energies. Following the setup of Kolmogorov
[16], we create artificial energy functions by randomly
sampling from Gaussians: θu:0, θu:1 ∼ N (0, 1). Pair-
wise energies were set as follows: θuv:00 = θuv:11 = 0;
θuv:01, θuv:10 ∼ N (0, σ2) and σ = { 1

d ,
3
d ,

5
d}, where d is

the max-degree in G. We note that these edge-terms are
mixed potentials, i.e., some of them are submodular, while
others are supermodular. Increasing the value of σ increases
the effect of interaction/edge terms, and generally makes
the problem harder to solve. For example, a typical effect
is that QPBO labels fewer and fewer nodes as σ increases
(at σ = 5/d, QPBO always left all nodes unlabelled). For
all our experiments, we generated 100 such energies, and
report mean results.

Fig. 5a shows the performance of various methods on a
4-node fully connected graph, which is the smallest non-
outer-planar graph. We use the 6-subgraph decomposition
shown in Fig. 4. First we note that when σ is small (1/d), all
methods are able to solve the problem, and the gap between
the lower-bounds and energies becomes very small. How-
ever, with larger σ the behaviour is different. QPBO labels
fewer nodes (for σ = 5/d, QPBO always left all nodes un-
labelled). We can see that the lower-bound of OPD-DD is
tighter than TRW-S and the energies are lower than others.

Figs. 5b, 5c shows results on a 50-node fully connected
graph (K50). We use the heuristic described in §3 to find
the collection of outer-planar subgraphs that cover K50.
Our method typically needed 15 spanning outer-planar sub-
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(a) K4: 2-labels.
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(b) K50: 2-labels.
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(c) K50: 2-labels zoomed.
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(d) 30× 30 Grid: 2-labels.

0 10 20 30 40 50
150

200

250

300

350

En
er
gy

Iterations
0 10 20 30 40 50

400

600

800

1000

En
er
gy

Iterations
0 10 20 30 40 50

600

800

1000

1200

En
er
gy

Iterations

(e) K50: 4-labels.
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(f) K50 4-labels zoomed.
Figure 5: Synthetic Energies: Each row corresponds to particular graph structure. Columns corresponds to different (increasing) values of
σ (see §5 for details about energy construction). As σ increases the performance gap between OPD and baselines becomes more evident.

graphs, which is only slightly higher than the outerthickness
Θo(K50) = d 50+1

4 e = 13. As in the previous experiment,
OPD-MP performs the best and the lower-bound of OPD-
DD is the tightest, even though the primal solution of OPD-
DD does not make much progress. This suggests that the
Lagrangian relaxation of OPD-DD may not be tight in this

case. We note this corroborates with a similar observation
made by Kolmogorov [16].

Fig. 5d shows results on a 30x30 grid. We use the 2-
comb decomposition shown in Fig. 3 to get 2 outer-planar
graphs. Again, OPD-MP performs the best and the OPD-
DD lower-bound is the tightest. In addition, OPD-DD pri-



mal does not stall, which suggests that grids may be better
for the OPD-DD Lagrangian relaxation.

Fig. 5e shows the results for a 4-label problem on K50.
In this case, multi-label energies were randomly sampled
in a similar manner as before. For this experiment, QPBO
and OPD were used within an alpha expansion framework.
The multi-label energies always violated some triangle in-
equalities, and we did not perform any truncation. We can
see that AE-OPD-MP/DD both perform very similar and do
better than TRW-S and BP. It is important to mention that
the iteration number (x-axis) for AE-QPBP/OPD refers to
iterations of alpha-expansion and is not directly compara-
ble with TRW/BP iterations.
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Figure 6: Gender-Face Assignment: The MAP solution over the
defined graph is shown using pink for female and blue for male.
Red dashed circles show incorrect gender classification.

We now report results on real applications. In all
cases OPD performed competitive or better than baselines.
Gender-Face Assignment. In this application, the goal is
to assign a gender to all faces found in a group photograph.
A graph is formed by first detecting faces. Each face is con-
sidered a node and edges are found with Delaunay triangu-
lation. The node energy at a face corresponds to the negative
log-likelihood that this face is assigned to a particular gen-
der, using a gender classifier based on facial appearance.
Edge features capturing the relative sizes and positions of
the two faces corresponding to an edge are extracted. The
frequency of gender pair assignments for 200-nearest neigh-
bours in a labelled dataset [6], is used to create the edge
energy. More details about the dataset, features used, ap-
pearance classifiers and pairwise descriptors can be found in
Gallagher and Chen [7]. Fig. 6 shows the energy plots, and
the gender assignments of OPD-MP. We note that OPD-DD
(and MP) finds the global solution (lower-bound of OPD-
DD = energy) in the first iteration for these instances.
Multiclass Object Labelling. In this application, the task
is to label each segment in an image (in the MSRC object

Sky
Building

Tree

Road 0 10 20 30 40 504

6

8

10

12

14

16

En
er

gy

Iterations
 

 

TRW
BP
AE−OPD−MP
AE−OPD−DD
LB−TRW

Figure 7: Object Labelling (MSRC).

class recognition dataset) with one of 21 object categories
such as cow, grass, etc. A fully connected graph is con-
structed over these segments. The node energies are com-
puted as the negative log of the likelihood of that segment
being assigned to one of the 21 classes, using a classifier
trained on texture and color features. The edge energies are
the negative log of the class co-occurrence matrix from the
training data. More details about the features and appear-
ance classifiers can be found in Parikh et al. [25]. Fig. 7
shows the results.
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Figure 8: Optical Flow: Energy and lower bounds.

Optical Flow. We also tested OPD on a standard Mid-
dlebury optical flow benchmark. We closely followed the
energy construction of Komodakis and Paragios [21]. The
graph used was a 4-connected grid graph over pixels. The
labels correspond to 2D motion vectors within a window.
Unary energies are given by absolute intensity difference
between a pixel and its corresponding location (under a flow
labelling) in the next frame. Pairwise energies were a trun-
cated weighted squared euclidean distance between the two
labellings at the nodes. Fig. 8 shows the results.

6. Discussions and Future Work
To summarize, this paper presents a unifying perspec-

tive of different approximate MAP inference techniques –
called “Decomposition Methods”, i.e. methods that decom-
pose the given problem over a a graph into tractable sub-
problems over subgraphs and then employ message passing
over these subgraphs to merge solutions. Using this frame-
work, we leverage a new class of graphs amenable to exact
inference (called outer-planar graphs), and propose a new
approximate inference algorithm (OPD). OPD is a gener-
alization of tree-based methods and contains TRW, BP as
special cases. Our experiments show that this extension be-



yond trees is indeed very powerful – OPD outperforms cur-
rent state of art inference methods on hard non-submodular
synthetic problems, and is competitive on real vision ap-
plications. On a broader scope, we suggest that topologi-
cal aspects of graphs are fertile grounds for improving and
gaining a better understanding of MAP inference.
Generalized k-treewidth decomposition. As we men-
tioned earlier, outer-planar graphs are low treewidth struc-
tures. All outer-planar graphs have treewidth (TW) 2. How-
ever, the class of TW-2 structures (called series-parallel
graphs) is strictly larger than outer-planar graphs (meaning
that there exist TW-2 structures that are not outer-planar).
It is, of course, an interesting direction to extend the ideas
presented in this paper to TW-2, or more generally TW-
k structures. Naturally, choosing more complex subprob-
lems should lead to tighter approximations but inference on
each of these subproblems is exponential in k, i.e. O(nLk).
Thus each higher order decomposition comes at an addi-
tional computational cost of O(L) as well as the cost of
finding the higher order decomposition (however fewer de-
compositions will typically be required to cover the graph).
So it might be a good idea to find a sweet spot required for
our applications.
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[9] D. Gonçalves. Edge partition of planar sraphs into two outerplanar
graphs. In STOC, pages 504–512. ACM, 2005.

[10] R. Guy and R. Nowakowski. The outerthickness and outercoarseness
of graphs i. the complete graph and the n-cube. Topics in Combina-
torics and Graph Theory: Essays in Honour of G. Ringel, 1990.

[11] P. Hammer. Some network flow problems solved with pseudo-
boolean programming. Operations Research, 13:388–399, 1965.

[12] H. Ishikawa. Exact optimization for markov random fields with con-
vex priors. PAMI, 25(10):1333–1336, 2003.

[13] K. Jung, P. Kohli, and D. Shah. Local rules for global map: When do
they work ? In NIPS, 2009.

[14] K. Jung and D. Shah. Local algorithms for approximate inference in
minor-excluded graphs. In NIPS, 2007.

[15] P. W. Kasteleyn. Dimer statistics and phase transitions. Journ. of
Math. Phys., 4(2):287–293, 1963.

[16] V. Kolmogorov. Convergent tree-reweighted message passing for en-
ergy minimization. PAMI, 28(10):1568–1583, 2006.

[17] V. Kolmogorov. Blossom V: a new implementation of a minimum
cost perfect matching algorithm. Mathematical Programming Com-
putation, 1(1):43–67, 2009.

[18] V. Kolmogorov and R. Zabih. What energy functions can be mini-
mized via graph cuts? PAMI, 26(2):147–159, 2004.

[19] N. Komodakis and N. Paragios. Beyond loose lp-relaxations: Opti-
mizing mrfs by repairing cycles. In ECCV, 2008.

[20] N. Komodakis and N. Paragios. Beyond pairwise energies: Efficient
optimization for higher-order mrfs. In CVPR, 2009.

[21] N. Komodakis, N. Paragios, and G. Tziritas. Mrf optimization via
dual decomposition: Message-passing revisited. In ICCV, 2007.

[22] F. Liers and G. Pardella. A simple max-cut algorithm for planar
graphs. Technical report, Combinatorial Optimization in Physics
(COPhy), 2008.

[23] E. Mäkinen and T. Poranen. An annotated bibliography on the thick-
ness, outerthickness, and arboricity of a graph. Technical report,
University of Tampere, 2009.

[24] S. L. Mitchell. Linear algorithms to recognize outerplanar and max-
imal outerplanar graphs. Information Processing Letters, 9(5):229 –
232, 1979.

[25] D. Parikh, C. Zitnick, and T. Chen. From appearance to context-
based recognition: Dense labeling in small images. In CVPR, pages
1–8, 2008.

[26] J. Pearl. Reverend bayes on inference engines: A distributed hierar-
chical approach. In AAAI, 1982.

[27] T. Poranen. Approximation algorithms for some topological invari-
ants of graphs. PhD thesis, University of Tampere, 2004.

[28] S. Ramalingam, P. Kohli, K. Alahari, and P. H. S. Torr. Exact infer-
ence in multi-label crfs with higher order cliques. CVPR, 2008.

[29] C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer. Opti-
mizing binary mrfs via extended roof duality. In CVPR, June 2007.

[30] N. N. Schraudolph and D. Kamenetsky. Efficient exact inference in
planar ising models. In NIPS, 2008.

[31] W.-K. Shih, S. Wu, and Y. S. Kuo. Unifying maximum cut and min-
imum cut of a planar graph. IEEE Trans. Comput., 39(5):694–697,
1990.

[32] S. E. Shimony. Finding maps for belief networks is np-hard. Artificial
Intelligence, 68(2):399–410, August 1994.

[33] D. Sontag and T. Jaakkola. New outer bounds on the marginal poly-
tope. In NIPS, 2007.

[34] D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss.
Tightening lp relaxations for map using message passing. In UAI,
2008.

[35] M. Wainwright, T. Jaakkola, and A. Willsky. Map estima-
tion via agreement on (hyper)trees: Message-passing and linear-
programming approaches. IEEE Trans. Inf. Th., 51(11):3697–3717,
2005.

[36] T. Werner. High-arity interactions, polyhedral relaxations, and cut-
ting plane algorithm for soft constraint optimisation (map-mrf). In
CVPR, 2008.

[37] T. Werner. Revisiting the decomposition approach to inference in ex-
ponential families and graphical models. Technical Report Research
report CTU-CMP-2009-06, Center for Machine Perception, Czech
Technical University, 2009.

[38] M. Yannakakis. Node- and edge-deletion np-complete problems. In
Proc. ACM Symposium on Theory of Computing, 1978.


