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Experimental Results

Attributes-based Feedback for Training Classifiers Simultaneous Attribute and Category Learning
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» Large vocabulary of categories; users can only verify
» Realistic in surveillance, bird or leaf recognition
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Additional Experiments

- pV is the probability that the user accepts label for x;; H® is resultant entropy of system

Weighing Negative Examples

- p' =1 — p® is the probability that the user rejects label and provides an attributes-based feedback; H' is resultant entropy

» There are 2M possible feedback statements (M attributes, “too” or “not enough”
- Chances of the supervisor picking any of M attributes with “too” response is p! "~ and “not enough” response is p;-.

» Fast active approach is not a lot worse than brute force (tested on a smaller dataset)
» Attribute models learned on the fly are worse as attribute predictors in general
» We compare our two interfaces for data collection
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(b) Comparison to brute force (c) Free-form attributes-feedback

(a) Quality of attribute predictors

Figure: (a) Attribute models learnt on the fly are worse attribute models per say, but are better suited for providing classifier-feedback than pre-trained attribute
models. (b) Our clustering-based fast active learning approach does not perform significantly worse than the brute-force version of our approach which would be
prohibitively slow. (c) A comparison between two interfaces for collecting attributes-based feedback

real users

» Show example images from a pair of categories to
10 workers on Mturk and ask which category
has a stronger presence of attribute

» W,(x) captures the likelihood at iteration Q that unlabeled image x is not from class /
» Computed using attributes-based feedbacks over past iterations

Q
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» We extend the relative attributes-based feedback setup for learning classifiers: more accurate, robust and practical

» Mturk workers choose an attribute from a list
that corresponds to the most obvious difference
between the two categories

at iteration q) than x9 i.e. attribute strength rpe(Xx) < rme(x9)
» Otherwise, ny(x) is number of images between x9 and x, when sorted by attribute amq

» Galin in classification accuracy by significant margin
» Collected and made available Relative Face Attributes Dataset for 60 classes

emall: arijit@cs.umd.edu WWW: http://filebox.ece.vt.edu/~parikh/attribute_ feedback/

University of Maryland, College Park and Virginia Tech


http://filebox.ece.vt.edu/~parikh/attribute_feedback/

