

Simultaneous Active Learning of Classifiers & Attributes via Relative Feedback Arijit Biswas (University of Maryland, College Park) and Devi Parikh (Virginia Tech)

Attributes-based Feedback for Training Classifiers

Contributions

- Learn attribute & category models simultaneously on the fly; do not require pre-trained attributes \rightarrow more flexible & practical
- Actively select query image to maximize expected gain from attributes-based feedback \rightarrow faster learning
- Intelligently weigh instances based on feedback \rightarrow robust learning
- Large Relative Face Attributes Dataset created!
- ▶ 60 categories [PubFig, Kumar et al. 2009]
- 29 attributes
- Available online
- Large vocabulary of categories; users can only verify
- Realistic in surveillance, bird or leaf recognition

Weighing Negative Examples

- $\mathbf{v}_{O}^{\prime}(\mathbf{x})$ captures the likelihood at iteration Q that unlabeled image x is not from class /
- Computed using attributes-based feedbacks over past iterations

$$w_Q'(\boldsymbol{x}) = \sum_{q=1}^Q n_q(\boldsymbol{x})$$

- Where $n_q(\mathbf{x})$ is 0 if: I was not predicted label for $\mathbf{x}^q \, \mathbf{OR}$ I was correctly predicted $\mathbf{OR} \, \mathbf{x}$ does not have more a_{m^q} (attribute feedback at iteration q) than \mathbf{x}^q i.e. attribute strength $r_{m^q}(\mathbf{x}) < r_{m^q}(\mathbf{x}^q)$
- Otherwise, $n_a(\mathbf{x})$ is number of images between \mathbf{x}^q and \mathbf{x} , when sorted by attribute a_{m^q}

- + Leads to better discriminative performance than label-based feedback
- Needs pre-trained attribute models
- All negative examples treated to be equally likely
- Query image not selected intelligently

'PointyNose' 'BigNose' 'Nose-to-MouthLine 'RosyCheeks' RoundFace' 'RoundJaw' 'Shiny Skin' MasculineLooking/Male' 'WearingLipstick

Simultaneous Attribute and Category Learning

- Do not need pre-trained attributes!
- User can introduce any attribute at any time; highly flexible
- ▶ If user says: " \mathbf{x}^q is too a_m to be I":
- Iearner fetches images labeled as /
- appends O_m with constraints $\hat{O}_m = O_m \cup \{(\mathbf{x}^q, \mathbf{x}_i)\}$
- where, \mathbf{x}_i s have been labeled as I and O_m are ordering constraints used to train a_m

Active Selection of Images

- Select image that reduces expected system entropy the most
- Novel active learning algorithm in attribute based feedback setup
 - Present Entropy of system: *H*
- $\mathbf{P}_k(\mathbf{x}_i)$ is probability of image \mathbf{x}_i belonging to class k (according to classifier h_k) and N is number of images in unlabeled set

Select the image which reduces expected entropy of the system

Expected change in entropy of system:

$$\Delta H(i) = H - \left(p^0 H^0 + p^1 \left(\sum_{m=1}^{M} p_m^{1+} H_m^{1+} + \sum_{m=1}^{M} p_m^{1-} H_m^{1-} \right) \right)$$

- p^0 is the probability that the user accepts label for x_i ; H^0 is resultant entropy of system
- $p^{1} = 1 p^{0}$ is the probability that the user rejects label and provides an attributes-based feedback; H^{1} is resultant entropy
- ► There are 2M possible feedback statements (M attributes, "too" or "not enough"
- Chances of the supervisor picking any of M attributes with "too" response is p_m^{1+} and "not enough" response is p_m^{1-} .
- Resultant entropy of the system is H_m^{1+} and H_m^{1-} respectively.

Efficient Active Selection:

- Brute force method to find best image has high computational cost
- Requires learning 2NM ranking functions at each iteration
- We propose a fast approximation by clustering
- Train ranking function only for every cluster center instead of every image
- ▶ Need to train only 5 7% ranking functions

Collecting Relative Attribute Data from Mturk

- Exhaustive data collection to run experiments automatically while still using feedback from real users
- Show example images from a pair of categories to 10 workers on Mturk and ask which category has a stronger presence of attribute
- Two interfaces used for experiments:
- Mturk workers provide free form attribute feedback
- Mturk workers choose an attribute from a list that corresponds to the most obvious difference between the two categories

Used to train attribute models

$$H = -\sum_{i=1}^{N}\sum_{k=1}^{K}p_k(\boldsymbol{x}_i)\log(p_k(\boldsymbol{x}_i))$$

(3)

Artificial Artificial Intelligence

Experimental Results

Name of Method Baseline passive Baseline active Parkash & Parikh -active Parkash & Parikh -passiv Proposed passive-pre-trained-weights Proposed passive-on-the-fly-without-weights Proposed passive-on-the-fly-weights Proposed active-maxent-on-the-fly-weights

- Run experiments in two different domains faces and shoes
- Weighing negative samples improves performance; especially with pre-trained attributes
- Learning attributes on the fly lets us add more correct negative examples to the classifier
- No pre-training cost but better classification with attributes on the

Additional Experiments

- ► Fast active approach is not a lot worse than brute force (tested on a smaller dataset) Attribute models learned on the fly are worse as attribute predictors in general
- We compare our two interfaces for data collection
- Ideal: a system where people can provide free form attribute feedback However that involves natural language processing: future work

Figure: (a) Attribute models learnt on the fly are worse attribute models per say, but are better suited for providing classifier-feedback than pre-trained attribute models. (b) Our clustering-based fast active learning approach does not perform significantly worse than the brute-force version of our approach which would be prohibitively slow. (c) A comparison between two interfaces for collecting attributes-based feedback

Conclusion

- Gain in classification accuracy by significant margin

Figure: Comparing our proposed approach to various baselines (Table above) Our active method outperforms the passive and traditional maximum entropy image selection methods

► We extend the relative attributes-based feedback setup for learning classifiers: more accurate, robust and practical

Collected and made available Relative Face Attributes Dataset for 60 classes