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Abstract. Unsupervised image clustering is a challenging and often ill-
posed problem. Existing image descriptors fail to capture the clustering
criterion well, and more importantly, the criterion itself may depend on
(unknown) user preferences. Semi-supervised approaches such as distance
metric learning and constrained clustering thus leverage user-provided
annotations indicating which pairs of images belong to the same clus-
ter (must-link) and which ones do not (cannot-link). These approaches
require many such constraints before achieving good clustering perfor-
mance because each constraint only provides weak cues about the de-
sired clustering. In this paper, we propose to use image attributes as a
modality for the user to provide more informative cues. In particular,
the clustering algorithm iteratively and actively queries a user with an
image pair. Instead of the user simply providing a must-link/cannot-link
constraint for the pair, the user also provides an attribute-based reason-
ing e.g. “these two images are similar because both are natural and have
still water” or “these two people are dissimilar because one is way older
than the other”. Under the guidance of this explanation, and equipped
with attribute predictors, many additional constraints are automatically
generated. We demonstrate the effectiveness of our approach by incorpo-
rating the proposed attribute-based explanations in three standard semi-
supervised clustering algorithms: Constrained K-Means, MPCK-Means,
and Spectral Clustering, on three domains: scenes, shoes, and faces, using
both binary and relative attributes.

1 Introduction

Image clustering is the problem of grouping images such that similar images fall
in the same clusters and dissimilar images fall in different clusters. Image similar-
ity as perceived by humans is difficult to capture by existing image descriptors.
Moreover, the notion of similarity itself is often ill-defined. For instance, one user
may want to cluster a group of faces such that people of the same gender, race
and age fall in the same cluster, while a different user may want to cluster faces
based on accessories such as glasses, makeup, etc. Clearly, without supervision,
clustering is an ill-posed problem.

Semi-Supervised clustering approaches [1–8] leverage user-provided pairwise
constraints either to learn an appropriate distance metric in the feature space
(distance metric learning [5–8]) or to guide a clustering algorithm towards cor-
rect clusters (constrained clustering [1–4]). These pairwise constraints are either
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Fig. 1: An Illustration of our approach. The system interactively queries the user
with a pair of images, and solicits “must-link” and “cannot-link” response along
with an attribute-based explanation. Using attribute predictors, the system can
automatically generate additional pairwise constraints.

must-link or cannot-link, indicating that the two images in the pair should be-
long to the same cluster or different clusters resp. These constraints allow the
user to inject their domain knowledge or preferences in the clustering algorithm.

A fundamental problem with these approaches is that they require a large
number of pairwise constraints in order to achieve decent performance. This
is because the pairs of images to be annotated are typically randomly chosen,
and are likely to be redundant. Active clustering approaches [9–11] reduce the
number of required constraints by iteratively and actively selecting a pair to be
annotated by a user in the loop. But each constraint still remains a weak low-
level indication of the desired clustering. For instance, active PCK-Means [10]
requires 5000 constraints to achieve 30% accuracy on a dataset of 500 face images
as reported in [9].

We propose accessing the user’s mental model of the desired clustering via
a mid-level semantic representation i.e. visual attributes. Some attributes like
wearing glasses or having four legs are binary in nature while others like smiling
and attractive are relative [12–15]. Both binary and relative attributes have been
shown to improve various computer vision tasks like image search [16, 17] and
classification [13, 14, 18, 19]. In this paper, we show that attributes can be used
for achieving more accurate clusterings when using semi-supervised clustering
algorithms.

Specifically, for an actively selected image pair, the user provides a must-link
or cannot-link constraint, along with an attribute-based explanation for that
constraint. This explanation can be in terms of binary attributes e.g. “these two
shoes are similar because both are red and have high-heels”, or in terms of relative
attributes e.g. “these two people are dissimilar because one is significantly older
than the other”. This form of an explanation is intuitive for a user. Equipped
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with pre-trained attribute predictors, the machine can infer a large number of
constraints from just one user response. For instance, in the first example the
machine can identify all shoes that are red and have high-heels and add must-
link constraints between all possible pairs. In the second example the machine
can identify pairs of images where the difference in age is even larger than the
query pair, and add cannot-link constraints between these pairs. This results in
significant gains in clustering accuracy. The scores of the attribute predictors
can be used to assess the confidence of these automatically added constraints.

We demonstrate the effectiveness of our approach by incorporating binary
and relative attribute-based explanations in three diverse semi-supervised clus-
tering algorithms: Constrained K-Means [1], MPCK-Means [2] and Spectral
Clustering [20] on three different domains: scenes (SUN [21]), faces (PubFig [13])
and consumer products (Shoes [22]) using real human studies. We also evalu-
ate our system on user-specific or personalized clustering and show that our
approach can be used to guide the system towards different clustering outputs.

2 Related Work

Semi-Supervised clustering approaches are either constraint-based [1–4] or
metric-based [5–8]. Both these approaches use pairwise constraints (must-link
and cannot-link) to guide a clustering algorithm towards correct clusters or to
learn an appropriate distance metric for the given data. Basu et. al. [2] propose
an integrated framework that incorporates constrained-clustering and distance
metric learning. These approaches rely on large number of constraints in order
to achieve satisfactory clustering performance even on small datasets with low-
dimensional features.

Active clustering works like [9,11] reduce the number of constraints by query-
ing a user on actively chosen pairs instead of completely random pairs. But these
approaches are specific to the clustering algorithms they use. Biswas et. al. [9]
present an active clustering algorithm that goes through all possible pairs and
then re-clusters the data in order to identify the most informative pair. Hence,
they use a simple Minimal Spanning Tree based clustering algorithm that can
be run many times in a reasonable amount of time. Wauthier et al. [11] pro-
pose an active learning algorithm specifically for spectral clustering. Moreover,
even though these approaches reduce the number of constraints, each constraint
remains a weak indication of the desired clustering. Our attribute-based ap-
proach on the other hand allows the user to convey rich information which can
be propagated to other unlabelled pairs in the dataset. It is also not specific
to any clustering algorithm. We show that our approach can improve perfor-
mance across different clustering algorithms including a mix of constraint- and
metric-based approaches.

Attributes are mid-level concepts that have been extensively used for a vari-
ety of tasks in computer vision [13–19,22–26]. The vocabulary of attributes can
be pre-defined or it can be discovered [27, 28]. Recently, Attributes have been
used as a mode of communication between humans and machines [16, 18, 19].
Donahue and Grauman [19] use spatial annotations and binary attributes to al-
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low an annotator to provide an explanation for a particular class label. Whittle
Search [16] uses relative attributes to allow a user to convey (potentially actively
solicited [29]) feedback to a search engine to quickly find the desired target im-
age. [15] uses attributes to avoid semantic drift in a bootstrapping approach by
enforcing known relationships between categories (eg: “banquet halls are big-
ger than “bedrooms). An exhaustive set of such relationships are provided to
the system as input (spirit to zero shot learning [14]). In our approach, we use
attributes to propagate constraints to pairs of images in an interactive semi-
supervised clustering setting. Parkash and Parikh [18] use relative attributes
feedback (e.g. “this image is too open to be a forest”) to identify additional neg-
ative examples from an unlabelled pool of images to train a classifier. Attributes
have also been used for fine-grained classification with a human-in-the-loop who
conveys domain knowledge by answering attribute-based questions at test time
to aid the machine [25]. To the best of our knowledge, ours is the first work on
interactive semantic explanation-based clustering of images. These explanations
are used to propagate domain knowledge to other pairs of images in terms of
both must-link and cannot-link constraints. The “domain knowledge” can easily
be user-preferences, making our approach a natural fit to personalized clustering.

Crowd-in-the-loop clustering has been explored for dealing with a large col-
lection of images. Crowdclustering [8,30] shows small subsets of images to MTurk
workers and they are asked to annotate the images with keywords. Similarity of
image pairs is then determined based on how many keywords they share. Tamuz
et al. [31] learn a similarity measure for images in the form of a kernel matrix by
posing triplet comparison queries to a crowd. Our approach can be used to make
such crowd-in-the-loop efforts more cost effective by reducing human effort via
attribute-based explanations.

The rest of this paper is organized as follows: Sec 3 briefly describes three
semi-supervised clustering approaches that we augment using attribute-based
explanations. Sec 4 describes the details of incorporating these explanations.
Sec 5 presents our experimental results. We conclude the paper in Sec 6.

3 Semi-Supervised Clustering Approaches

Semi-Supervised clustering incorporates background knowledge in the form of
pairwise constraints: must-link and cannot-link. Let M be the set of must-link
constraints and C be the set of cannot-link constraints. The pairwise constraints
lead to two types of transitive closure: 1) (a, b) ∈M and (b, c) ∈M =⇒ (a, c) ∈
M . 2) (a, b) ∈M and (b, c) ∈ C =⇒ (a, c) ∈ C.

In the following subsections, we briefly describe the three semi-supervised
clustering approaches that we augment using our attribute-based approach.

3.1 Constrained K-Means

Constrained K-Means or COP K-Means [1] is a modification of K-Means to incor-
porate pairwise constraints. Specifically, during the assignment step of K-Means,
instead of assigning every datapoint to its nearest cluster, the datapoint is as-
signed to the nearest cluster which would not result in violating any constraints.
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The centroid estimation step remains the same. We use our own implementation
of COP K-Means. During the assignment step, there are situations when a point
cannot be assigned to any of the clusters because every assignment would result
in violating some constraint. In such cases, we assign the point to the cluster
with minimum violations.

3.2 MPCK-Means

Metric Pairwise Constrained K-Means or MPCK-Means [2] combines distance
metric learning and constrained clustering in a unified framework. It minimizes
the following objective function:

∑
xi

(
‖xi − µli‖2Dli

− log (det(Dli))
)

+
∑

(xi,xj)∈M

wij1[li 6= lj ]+
∑

(xi,xj)∈C

wij1[li = lj ]

(1)
Here, xi denotes the ith datapoint, li is the cluster-id of xi, µli is the corre-

sponding centroid,Dli is the matrix that parameterizes the Mahalanobis distance
metric for cluster li, wij is the weight (or importance) of the pairwise constraint
(xi,xj), and 1 denotes the indicator function. The objective function penalizes
those assignments which violate many constraints (last two terms of objective)
and also assignments where the datapoints are far from their respective cen-
troids w.r.t. the learnt distance metric (first term of objective). The function is
minimized by an Expectation Maximisation (EM) approach, where the E-step
assigns points to the closest centroids according to the learnt distance metric,
and the M-step estimates the centroids and learns the distance metric. We use
the code provided by the authors. In our experiments, we enforce a common
distance metric for all clusters. This was found to perform better [2].

3.3 Spectral Clustering

We use the spectral clustering algorithm from [20]. It consists of the following
steps:

– Compute the N ×N affinity matrix A for the N datapoints.

Aij = exp
(
−‖xi−xj‖2

2σ2

)
for i 6= j, Aii = 0. The parameter σ controls how

fast the affinity falls with increasing distances.
– Compute the Laplacian L of the affinity matrix and find its top K eigenvec-

tors.
– Stack the eigenvectors as columns to form the N×K matrix E and normalize

the rows of E to form a N ×K matrix Y .
– Finally, cluster the N rows of matrix Y into K clusters using K-Means. The

assignment of each row provides the cluster-id for each of the N datapoints.

Kamvar et al. [32], present a semi-supervised version of this spectral cluster-
ing algorithm. If (xi,xj) is a must-link constraint, then A(i, j) and A(j, i) are
set to 1 (zero distance) and if (xi,xj) is a cannot-link constraint then A(i, j)
and A(j, i) are set to 0 (∞ distance). In our experiments, we set the value of σ
as the average pairwise distance between datapoints.
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4 Approach

Let U denote the set of N images {x1,x2, . . . ,xN} that we want to cluster into
K groups. Let {a1, a2, . . . , aQ} be the Q attributes in the predefined attributes
vocabulary associated with the images. Recall that M and C are the set of
must-link and cannot-link constraints respectively and we represent them by
symmetric matrices M and C of dimensions N × N , where M(i, j) denotes
whether image xi and image xj are must-linked and similarly C(i, j) denotes
whether image xi and image xj are cannot-linked. Initially M and C are empty,
and will get filled up as we query the user on pairs of images at each iteration.
Ideally, we would like to fill these matrices as accurately and in as few user
iterations as possible. Our approach is as follows:

1. Cluster images into K clusters using unsupervised K-Means.
2. Identify the most uncertain pair (Sec 4.1) and present it to the user as query.
3. User provides a must-link or cannot-link label for the pair along with an

attribute-based explanation (Sec 4.2). Perform transitive closure on all ac-
cumulated ground truth constraints.

4. Convert attribute explanation to additional (possibly noisy) constraints (Sec 4.3).
5. Cluster the images with the updated set of constraints using a semi-supervised

clustering algorithm.
6. Repeat from step 2.

4.1 Active selection of pair

A pair of very similar images are likely to be must-links (ML), and images that
are very different are likely to be cannot-links (CL). A must-link or cannot-link
label on a pair of images that is neither too similar nor too dissimilar is likely
be to be most informative for a semi-supervised clustering algorithm.

Let dij denote the distance between xi and xj in low-level feature space.
Let label be a random variable that takes two states, ML (must-link) and CL

(cannot-link). Let P ijML and P ijCL be the probabilities of the pair (i, j) being a
ML and CL respectively i.e.

P ijML = P (label = ML | dij), (2)

P ijCL = P (label = CL | dij) (3)

Using Bayes rule

P (label = ML | dij) ∝ P (dij | label = ML) ∗ P (label = ML) (4)

P (label = CL | dij) ∝ P (dij | label = CL) ∗ P (label = CL) (5)

The distributions P (dij | label = ML) and P (dij | label = CL) are ap-
proximated as Gaussians. Their parameters are estimated from the pairwise dis-
tances of all pairs in same clusters and different clusters respectively, according
to the current clustering. P (label = ML) and P (label = CL) are the proportion
of pairs in same and different clusters. Similar in spirit to active learning for
training classifiers [33], we select the pair with the highest entropy under the
distribution P (label | dij) and present it to the user to solicit label.
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4.2 Attribute-based Explanation

We assume that the vocabulary of attributes is pre-defined and the attribute
predictors have been trained offline. Presence of binary attributes can be pre-
dicted by standard classification tools [13, 14, 23]. Relative attribute models on
the other hand predict the relative strength of attribute presence in images using
ranking functions for each attribute in the vocabulary [12]. We use attributes
(both binary and relative) to allow the user to convey to the machine the seman-
tics that guide the similarity measure between images. This notion of similarity
may be based on common sense knowledge, specific domain knowledge, or user’s
preferences.

In case of binary attributes, we allow attribute-based explanations of the
following form: “These two faces are similar because both are young and white”,
“These two scenes are dissimilar because one is natural and other is not”. In this
way, the user can convey similarity along which visual properties suffices to make
images similar, and discrepancies along which attributes are sufficient to make
the images dissimilar. With relative attributes, the explanation for a must-link
pair is of the form “These two shoes are similar because both are similarly shiny
and formal” and “These two people are dissimilar because one is significantly
younger than the other”. In addition to relevance of attributes, this allows the
user to indicate the required sensitivity (or the lack of it) to discrepancies along
an attribute that the clustering algorithm should have to achieve the desirable
clustering. This rich explanation allows the machine to infer much more than a
single constraint from the user’s response (as described in the next subsection).

One could argue that instead of actively querying the user, perhaps the user
can describe the clustering criterion to the system in terms of attributes from
the very beginning. There are two concerns with such an approach. First, if
the attribute vocabulary is very large, indicating the relevance of each attribute
would be cumbersome. This is especially the case if the user were to specify the
desired sensitivity to differences in attribute strengths for each attribute (e.g.
how similar does the age of two people need to be for them to fall in the same
cluster? is a certain difference between two shoes in terms of heel height sufficient
to put them in different clusters?). In our approach, the user can simply look
at a pair of images and provide a response specific to those images. Second, the
criterion for clustering a large number of images may not be crystal clear in the
user’s mind till they see specific pairs of images and are forced to think explicitly
about the desired clustering output with respect to those images.

4.3 Incorporating Attribute-based Explanation

Binary Attributes: Without loss of generality, lets assume that the cannot-link
feedback on an image pair (xi,xj) is “These two images are dissimilar because
one is aq and the other is not”. The dissimilar label in the feedback provides
a ground truth constraint that (xi,xj) is cannot-linked and hence C(i, j) =
C(j, i) = 1. The attribute-based explanation suggests that pairs of images where
one has aq and the other does not are likely to belong to different clusters. The
machine can thus infer additional pairs S1×S2 as cannot-link constraints in the
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matrix C, where S1 is the set of images where aq is predicted to be present using
the pre-trained binary classifier for aq, and S2 is the set of images where aq is
predicted to be absent.

If the must-link feedback given by the user on the pair (xi,xj) is of the form
“These two images are similar because both are aq1 , aq2 , . . . aqT ”, it suggests that
having attributes aq1 , aq2 , . . . aqT in common are sufficient to qualify two images
as being similar. After adding the ground truth must-link constraint for the pair
(xi,xj), the machine then uses the attribute classifiers of aq1 , aq2 , . . . aqT to find
images that have all these attributes present in them. If the set of images is S,
then all pairs in S × S are added as must-link constraints in the matrix M .

Relative Attributes: If the cannot-link feedback on image pair (xi,xj) is
“These two images are dissimilar because xi is way too aq than xj”, the machine
first adds a ground truth cannot-link constraint C(i, j) = C(j, i) = 1. It then
creates the set SG which consists of all images where degree of presence of aq is
predicted to be greater than xi and the set SL which consists of all images where
degree of presence of aq is predicted to be less than xj . The pairs in SG × SL
are added as cannot-link constraints in the matrix C, because all such pairs
have a difference in relative strengths of aq even larger than (xi,xj), which the
user indicated is already too large for them to belong to the same cluster. For
a must link feedback “These two images are similar because both are equally
aq1 , aq2 , . . . aqT ”, machine computes SS , the set of images having the degree of
presence of each attribute aq1 , aq2 , . . . aqT between the ranges specified by xi and
xj . The pairs in SS × SS are added as must-link constraints in the matrix M
along with the ground truth constraint M(i, j) = M(j, i) = 1.

Note that representing images in the attribute-space instead of a low-level
feature-space is not likely to diminish the value of such attribute-based expla-
nations. Information about which attributes are relevant to the clustering and
which ones are not is still valuable. Moreover, we do not assume that the desired
clustering is precisely defined by the available vocabulary of attributes. We only
assume that some information about the clustering criterion can be explained in
terms of some of the available attributes, and hypothesize that this information
is significantly richer than the pairwise constraints alone. Both these hypotheses
are empirically validated in our experiments (Sec 5.2).

Purity of Constraints: The constraints generated by the machine from
attribute-based explanations are not expected to be 100% accurate because of
various factors like error of attribute classifiers/rankers, discrepancy in percep-
tion of attributes between the machine and user, erroneous feedback on the part
of the user, inconsistencies between the clustering criterion and attributes, etc.
On average, we found the accuracy of our attribute-based constraints to be 86%
for cannot-links and 60% for must-links. We solicit attribute explanations from
the user only up to a certain point (100 iterations in our experiments). This
is because the vocabulary of attributes is limited. After a point, attributes do
not add too many new constraints (especially with binary attributes). For in-
stance, we find that from 20th to 100th iterations, the number of newly added
constraints is only 13% of what are added in the first 20 iterations. From that
point onwards, the user provides only must-link and cannot-link labels for pairs
and the number of impure constraints goes down with iterations. This gives the
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user an opportunity to fine tune the clustering after the broad brush strokes of
attributes give them a head start.

Hard and Soft Constraints: The constraints created by the machine can
be incorporated in two ways: hard and soft. In the hard setting, all the generated
constraints are given confidence = 1 i.e. they are treated as being as important
and reliable as ground truth constraints. On the other hand, in the soft setting,
the machine-generated constraints are assigned confidences between 0 and 1
based on the confidence of attribute classifiers in predicting the attributes. This
may provide robustness to incorrect attribute predictions. With binary attribute-
based constraints, the confidence of a generated cannot-link constraint (xi′ ,xj′)
is ci′ ∗ cj′ , where ci′ and cj′ are the confidences of presence and absence of the
attribute aq in images xi′ and xj′ respectively. In case of a generated must-link
constraint (xi′ ,xj′), ci′ is the average confidence of presence of the qT attributes
in image xi′ , and cj′ is the average confidence of presence of the qT attributes in
image xj′ . The final confidence assigned to the pair is ci′ ∗ cj′ . When the cannot
link feedback on pair (xi,xj) involves a relative attribute aq, we first sort all
the images according to the ranking function for attribute aq. The confidence of
a generated cannot-link constraint (xi′ ,xj′) is proportional to the total number
of images that lie between xi′ and xi and between xj′ and xj in the sorted
list. In case of a must-link feedback, the confidence of a generated must-link
constraint (xi′ ,xj′) is proportional to how close xi′ and xj′ are in the sorted
orderings on average across the qT attributes. All the confidences are normalized
to lie between 0 and 1. When multiple attribute explanations indicate the same
pair to be cannot-linked or must-linked, we assign a confidence based on the
explanation leading to the highest confidence.

Incorporation of Soft Constraints: MPCK-Means directly allows for soft-
confidences in their formulation via the weights wij associated with each con-
straint in Equation 1. We set the weight wij to be the confidence computed for
(xi,xj) from user feedback. In spectral clustering, the affinity matrix A captures
the similarity of datapoints. If the confidence of a cannot-link constraint (xi,xj)
is c, we set A(i, j) = 1−c, and if the confidence of a must-link constraint (xi,xj)
is c, we set A(i, j) = c. COP K-Means does not allow handling of soft constraints
and so we modify it slightly. During the assignment of a point to a cluster, in-
stead of computing the number of violated constraints, we assign a datapoint to
the cluster with the least sum of confidences of violated constraints.

5 Experiments and Results

5.1 Experimental Setup

Datasets: We demonstrate our approach on three domains. Scenes: We use the
SUN Attributes dataset [34] that consists of indoor and outdoor scenes along
with pre-trained attribute classifiers for 102 attributes like natural, open, en-
closed, warm etc. Scene categories in the SUN dataset [21] are organized ac-
cording to a hierarchy, where the first level has super-ordinate categories like
indoor and outdoor scenes, the second level has basic-level categories like sports,
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Fig. 2: These are the 6 ground truth clusters in SUN600 dataset. They correspond
to categories like transportation, industrial regions, sports/recreation etc.

transportation, desert, etc. and the third (last) level has more than 700 fine-
grained categories. We choose six out of 16 categories from the second level
of the hierarchy and create a dataset of 600 images called SUN600. The six
categories cover scenes of various types like transportation, home/hotel indoor
scenes, sports/recreation, etc. An illustration of the clusters can be seen in Fig
2. We use GIST [35] features for this dataset. Faces: We use the Public Figures
Face Database [13] which consists of face images of 60 different public figures in
their development set. Attribute predictions for 73 binary attributes like male,
white, smiling, wearing glasses etc are available with the dataset. We use 570
images involving 38 people (Sec 5.3 has details regarding how the clusters are de-
fined). The features used are pyramid HOG features [36]. Shoes: Berg et al. [22]
provide a shoes dataset which is also used in [16]. Kovashka et al. [16] provide
ranking predictors for 10 relative attributes like shiny, formal, open, sporty etc.
We choose 1000 images belonging to four different categories namely, boots,
flats, high-heels, and sneakers, and refer to this dataset as Shoes1000. We use
the 960-d GIST features provided with the dataset. For SUN600 and Shoes1000
we assume that the categories are the desired clusters.

Human Studies: We collect attribute-based explanations for image pairs through
real human studies on Amazon Mechanical Turk. For each dataset, we run un-
supervised K-Means 300 times and choose the max-entropy pair each time ac-
cording to our formulation (Sec 4.1). We present these pairs to users on MTurk
and solicit attribute-based explanations. In our experiments, we pick a query at
each iteration from this pool of pairs. This allows us to collect data offline and
run exhaustive experiments on the collected data. Our MTurk interface shows
the desired clustering on top by displaying 4 randomly chosen images from each
cluster. These images are chosen offline for each dataset and are fixed across all
HITs. Note that this is just to inform the workers of the desired clustering. In a
real application, the users already have a clustering in mind. The clustering is not
described to users in any other form. The users observe the clusters and visual-
ize the similarity measure. They are presented with a pair and asked to indicate
whether the two images belong to the same or different clusters. They are also
asked to select attribute(s) from a list as explanation. In case of a cannot-link
(CL) label, users are asked to select the main property (attribute) that makes
the two images different. In the case of a must-link (ML) label, users are asked to
select as many attributes as necessary to make the two images similar. Multiple
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attributes for CL can be easily incorporated, but a single attribute is least time
consuming. Single attributes are often insufficient to establish similarity, hence
users are free to select more for ML responses. One HIT had 5 image pairs and
workers were paid 5 cents per HIT. To ensure good quality of responses, we took
a majority vote over 3 different workers for the ML/CL response.

Baselines: We compare our approach with the following baselines

(a) K-Means: Unsupervised K-Means clustering without any pairwise constraints.
(b) Random: User provides a must-link or cannot-link constraint on a randomly

chosen pair at each iteration. No attribute-based explanation is taken.
(c) Semi-Random: User provides constraint on a pair chosen randomly from out-

side the transitive closure of all previously labelled pairs. This is a stronger
baseline than (b) which may solicit feedback on redundant pairs. No Attribute-
based explanation is taken.

(d) Max-entropy: User provides constraints on the highest entropy pair as de-
scribed in Sec 4.1. No attribute-based explanation is taken. A comparison to
(c) semi-random baseline demonstrates the effect of our entropy formulation
even when constraints are chosen from outside the transitive closure.

(e) Many-Random: The above baselines add only 1 constraint per iteration. To
evaluate if our approach is benefiting from just more constraints as opposed
to meaningful constraints, we compare with a baseline that expands the set
of constraints every iteration by adding as many must-link and cannot-link
constraints as our approach generates, but between random pairs of images.
We experiment with both hard and soft constraints.

(f) Attributes-hard: User provides a constraint on the highest entropy pair along
with an attribute-based explanation. Machine generates hard constraints.

(g) Attributes-soft: User provides a constraint on the highest entropy pair along
with an attribute-based explanation. Machine generates soft constraints.

Evaluation Metric: We use the Jaccard’s coefficient (JCC) to quantify the
clustering accuracy. It is defined as follows:

Jaccard’s coefficient (JCC) = SS
SS+SD+DS

where SS is the number of pairs which belong to the same clusters in the
ground truth (GT) as well as the clustering output, SD is the number of pairs
which belong to same clusters in GT but are incorrectly placed in different
clusters by the clustering algorithm and DS is the number of pairs which belong
to different clusters in GT but are placed in same clusters by the algorithm.

5.2 Results

The semi-supervised clustering algorithm can be any one of the 3 algorithms de-
scribed in Sec 3. Results on Shoes1000 and SUN600 with some of the clustering
algorithms are shown in Fig 3. The results for more clustering algorithms can
be found in our supplementary material. Similar trends are observed when other
metrics like F-Measure, Rand-Index, or NMI are used to measure performance.
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Fig. 3: Results of our approach on SUN600 and Shoes1000

Results on PubFig will be presented when we show personalized clustering ex-
periments (Sec 5.3). We observed that spectral clustering had lot of variance in
performance between consecutive iterations, and so we averaged results across 6
random runs. We now discuss various aspects of our results in detail.

Active selection of pairs: In Fig 3 we see that for each of the non-attribute
baselines, the initial region is nearly flat. This demonstrates that semi-supervised
clustering algorithms do not gain much until a large number of pairs have been
labelled [2,9]. The max-entropy baseline starts learning earliest followed by semi-
random and pure-random. On average, we found that max-entropy picks pairs
that the current clustering had classified incorrectly (placed in different clusters
when they belong to the same cluster or vice versa) 40% of the times, while
semi-random picks such pairs only 25% of the times. This shows that our active
selection of image pairs is quite effective at picking informative pairs. Note that
even when no information is gained through the constraint itself (60% of the
times), the attribute-based explanation will still be informative.

Attribute explanations: Our proposed approach in Fig 3 starts learning
significantly earlier than non-attribute baselines, and outperforms these baselines
across the board. Clustering accuracy increases by 15-20% in the first 100 itera-
tions. This would have taken 20 times more constraints using the semi-supervised
clustering algorithms without attribute explanations. The many-random base-
line on the other hand performs even worse than the unsupervised version for
many iterations. This shows that the additional constraints generated using the
attribute explanations are important not just because of their quantity, but also
because of their relevance to the desired clustering. Clustering in attribute space
instead of low-level feature space does not diminish the effect of attribute-based
explanations. For SUN600, unsupervised K-Means clustering in attribute space
gives 20% accuracy (compared to 12% in low-level feature space). Attribute ex-
planations in this case still lead to 15% performance gain after 100 iterations.

Timing Analysis: In interactive applications like these, it is important to
consider the time spent by users in answering queries. In our approach, we ob-
served that the time spent by MTurk workers per question (with attributes
explanation) was around 17 secs on average as compared to 5 secs without at-
tributes explanation. Moreover, as mentioned earlier, attribute explanations are
taken only upto first 100 iterations. Using attributes, 70% accurate clusters can
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Fig. 4: Results of our approach on PubFig-Personalized and Shoes-Personalized

be obtained for Shoes1000 with just 40% of the user time as required by random
approach. The algorithm can propagate the attribute explanations and identify
the highest entropy pair in less than a second. The overall time per iteration is
dominated by the underlying clustering algorithm (typically 5-20 secs).

Binary and Relative Attributes: We show clustering results using both
relative attributes (Shoes1000) as well as binary attributes (SUN600). Both types
of attributes are able to provide significant gains to the clustering algorithms as
seen in Fig 3. We observed that the workers may use the same set of attributes in
a future explanation. When binary attributes are used, the same attribute does
not add any new information. This is because the constraints generated depend
only on the attribute predictors, which do not change. For relative attributes on
the other hand, repeated use of the same attributes can add new information
because the constraints generated are relative to the image pairs on which the
feedback was provided. Relative attributes allow the machine to be more specific
while generating constraints. We found that the number of incorrect constraints
are less (30% in Shoes1000) compared to for binary (40% in SUN600). Relative
attributes also allow the user to provide more fine-grained feedback and are
therefore more suitable for personalized clustering.

Hard vs. Soft Constraints: In Sec 4.3 we described two ways of incor-
porating the attribute explanations: hard and soft. The motivation behind soft
constraints is to provide robustness to noisy attribute predictions. Comparing
the soft and hard baselines in Fig 3, it can be observed that soft constraints
usually perform better than hard constraints for both our approach and the
many-random baseline In case of spectral clustering with SUN600, soft baseline
gives a significant gain over hard throughout the clustering process.

5.3 Personalized Clustering

Personalized Clustering: Apart from the usual common-sense or domain-
knowledge based clustering, we also evaluated our system for user-specific or
personalized clustering. The ideal way to do this is by showing the image dataset
to an MTurk worker and asking them to visualize a clustering and guide our
system iteratively using attribute-based explanations. The resulting clusters can
then be evaluated by the same user. However, MTurk is not the right platform
for such extensive long duration tasks. Having sufficient users come to our lab
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would limit the number of experiments we can conduct. Hence, we adopt the
following strategy to simulate personalized clustering. We first create a ground
truth (GT) clustering from a given set of images based on certain criteria (simu-
lated preferences). We then solicit attribute-based explanations consistent with
the desired clustering from MTurk workers using the same setup described in
Sec 5.1. Since each worker sees the same clustering, responses from different
workers can be thought of as coming from the same user.

We create the personalized GT clusters using two approaches: 1) By fixing
the definition of each cluster in terms of attributes (PubFig) and 2) By merging
several basic level categories to form clusters (Shoes). For PubFig, we create 4
clusters: {C1: white-male, C2: not-white-male, C3: female-lighthair, C4: female-
darkhair}. We call this dataset PubFig-personalized. We used category level
ground truth annotations to find the people that satisfy the various definitions.
A total of 38 categories (people) satisfied atleast one of the cluster definitions.
We used 15 images for each person resulting in 570 images total. For Shoes,
the GT has the following configuration {C1: Athletic shoes-Sneakers, C2: Boots-
Rainboots, C3: Clogs-Flats, C4: High Heels-Pumps-Stiletto}. We call this Shoes-
personalized and it consists of 450 images covering 9 basic categories.

Results on Shoes-personalized and PubFig-personalized are shown in Fig 4.
Our approach significantly outperforms all baselines in both the datasets. This
shows the power of our approach in allowing users to more effectively inject their
preferences in semi-supervised clustering algorithms as compared to existing
approaches. Other trends like soft baseline performing better than hard, max-
entropy better than random, etc. are observed in personalized clustering as well.
Especially with PubFig-personalized, the results are exceptionally good. This
may be because the clusters were created from attribute-based definitions. Note
however that it is quite natural for humans to visualize groups or clusters based
on certain attributes. Our approach can be used for organizing collections of
personal photos or shopping products for efficient browsing and retrieval.

6 Conclusion

We presented an interactive approach for augmenting semi-supervised clustering
approaches with attribute-based explanations. Using such a rich mode of com-
munication, a user can convey his clustering criterion to the machine without
having to annotate a large number of pairs of images. The clustering criterion
can be domain knowledge which can be provided by a crowd, or it can be user
preferences. We showed that by providing attribute-based explanations, the ma-
chine can get significant gains in clustering quality. We showed the generality of
our approach by incorporating the attribute-based explanations in three diverse
semi-supervised clustering algorithms, using both binary and relative attributes,
in three different domains. Future work involves discovering a vocabulary of at-
tributes simultaneously while clustering images and learning attribute models
on-the-fly instead of using pre-trained attribute predictors.
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