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Abstract
Existing approaches to contextual reasoning for en-

hanced object detection typically utilize other labeled cate-
gories in the images to provide contextual information. As a
consequence, they inadvertently commit to the granularity
of information implicit in the labels. Moreover, large por-
tions of the images may not belong to any of the manually-
chosen categories, and these unlabeled regions are typically
neglected. In this paper, we overcome both these drawbacks
and propose a contextual cue that exploits unlabeled re-
gions in images. Our approach adaptively determines the
granularity (scene, inter-object, intra-object, etc.) at which
contextual information is captured. In order to extract the
proposed contextual cue, we consider a scene to be a struc-
tured configuration of objects and regions; just as an object
is a composition of parts. We thus learn our proposed “con-
textual meta-objects” using any off-the-shelf object detec-
tor, which makes our proposed cue widely accessible to the
community. Our results show that incorporating our pro-
posed cue provides a relative improvement of 12% over a
state-of-the-art object detector on the challenging PASCAL
dataset.

1. Introduction
Object recognition is one of the central problems in com-

puter vision. Many recent works leverage contextual in-
formation surrounding the object-of-interest for enhanced
recognition [5, 11, 12, 14, 19, 22]. These typically leverage
labeled data from other object categories to learn contextual
relationships. This leads to two undesirable consequences.
Unlabeled regions: First, regions in the images that are
unlabeled are often neglected. In most scenarios such as
the popular MSRC [1] or PASCAL [7] datasets, not all re-
gions in the images are accounted for by the manually cho-
sen categories that are labeled. For instance, 28.18% of the
pixels in MSRC and 54.74% of pixels in the PASCAL 2007
dataset are not a part of the labeled categories. See Figure 1.
Do these unlabeled regions contain useful information that
is worth capturing? We conduct human studies on recog-
nizing objects in low-resolution images1 from the PASCAL

1Parikh et al. [19] showed that humans need contextual information for
recognition only when the appearance information is impoverished, such

context for aeroplane context for potted-plant context for dining-table 

Figure 1. Many approaches to contextual reasoning for object detection
model the relationship of the object-of-interest (yellow boxes) to other
object categories labeled in the dataset. They do not leverage unlabeled
regions in the images that do not belong to these manually chosen la-
beled categories, resulting in a highly myopic view of the scene (1st and
3rd row). Our approach (blue boxes) intelligently leverages information
present in these unlabeled regions to better detect the object of interest.
From left to right: unlabeled regions like sky and grass provide context for
aeroplanes, and unlabeled objects like windows and paintings are contex-
tually relevant for potted-plants and dining-tables respectively. The granu-
larities of our blue boxes relative to yellow boxes are learned adaptively.

dataset. We find that subjects perform better in scenarios
where they see the entire image including the unlabeled re-
gions (Figure 2). This indicates that the unlabeled regions,
which are often discarded, indeed contain useful contextual
information.
Adaptive granularity: Second, in focusing only on la-
beled regions in the image, models inadvertently limit the
contextual information captured to the granularity implicit
in the labels. For instance, most works exploring contex-
tual models for the PASCAL dataset consider only object-
level information, such as co-occurrence, relative location
and relative size [5, 9]. We argue that the granularity at
which contextual information is most helpful is category
specific. While an “aeroplane” may only need to consider a

as in low-resolution images.
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Figure 2. Human subjects were shown images excluding the unlabeled
regions (left), as well as entire images (middle). The object to be recog-
nized is shown with and without a yellow-outline (to avoid distraction).
Our results (right) indicate that subjects can recognize objects significantly
more reliably if information from the unlabeled regions is available. These
experiments were conducted on 394 PASCAL 2007 images containing 897
objects from 20 categories.

neighboring sky region as context, “dining-table” can bene-
fit from the entire scene layout. Moreover, while a “sheep”
may be surrounded by relevant contextual information all
around it, the most reliable contextual information for a “bi-
cycle” is the person on top. Therefore, it is crucial that con-
text is extracted from regions that adapt to different objects.

In this work, we overcome both these drawbacks and
propose a contextual cue that exploits unlabeled regions in
images and automatically adapts to each object category.
Formulation: What kind of information is contextually
most useful? Information that is relevant i.e. has consistent
spatial location with respect to the object-of-interest, and
information that is reliable i.e. has consistent appearance
across images for reliable detection. Interestingly, these are
also aspects that make object models effective: capturing
spatially coherent and visually consistent object-parts. In-
stantiating the popular hierarchical view of scenes [18, 20,
25] (parts are to objects as objects are to scenes), we can
cast the problem of learning relevant contextual regions in a
scene as that of learning detectors for “objects”, which we
call contextual meta-objects (CMOs). These CMOs form
our proposed contextual cues. Any existing object detector
can be used to learn our CMOs. In fact, the detector that
one trains to detect objects-of-interest (OOIs) can be seam-
lessly (and conveniently so!) used to learn CMOs, essen-
tially boosting the performance of the OOI detector without
designing complex algorithms or cumbersome learning pro-
cedures.
Summary of approach: How can we extract meaning-
ful contextual information from unlabeled regions? Our
approach exploits the following key observation: object
bounding boxes do not simply provide us with informa-
tion about what the object looks like which can be used
to train a detector for the object. The presence of an ob-
ject at a certain location in a natural image also provides an
anchor point that suggests a meaningful alignment among
the scenes containing these objects. Given images labeled
with bounding-boxes of the OOI, we align and cluster the
images such that each cluster contains images with similar
contextual information surrounding the OOI. We identify a
CMO region around the OOI that best captures this con-
textual information. Note that the granularity at which the

CMO region is defined is not fixed, and adapts to the content
of the images. Any off-the-shelf object detector can then be
trained to detect our CMOs. During testing, we apply the
CMO detector on the test image, and the score of the detec-
tion captures our contextual cue. This cue can be combined
with the OOI detection score, or other contextual cues for
enhanced OOI detection.
Contributions: In this work, we effectively exploit the
unlabeled regions in images that are often neglected by
most existing works, to extract contextually relevant cues
for enhanced object detection. Our contributions are three-
fold. First, we discover contextual regions that automati-
cally adapt to the object category of interest in order to cap-
ture contextual interactions at varying granularities (the en-
tire scene, inter-object, even intra-object) for different cat-
egories. Second, we cast the problem of extracting contex-
tual regions in scenes into the problem of learning object
models. This allows us to employ any off-the-shelf object
detector to learn our contextual cue; a convenient choice
being the object-of-interest detector whose performance we
hope to enhance via contextual reasoning. This simplicity
makes our proposed cue easily accessible to the community.
Lastly, our approach achieves higher detection performance
when using a single labeled category, than the state-of-the-
art approach [9] that utilizes labels for all 20 object cate-
gories on the PASCAL 2007 dataset. This demonstrates our
effective use of unlabeled regions. We use our approach
to boost performance of several object detectors, and show
that our contextual cue compares favorably to, and comple-
ments other sources of context. Our adaptive selection of
the granularity of contextual information outperforms the
fixed-granularity counterpart.

2. Related Work
Many recent works leverage contextual information for

enhanced recognition and localization of objects in natu-
ral images. Various sources of context have been explored,
ranging from the global scene layout, interactions between
objects and regions, as well as local features. Divvala et
al. [6] survey and study the effectiveness of different con-
textual cues and combine them to achieve superior perfor-
mance. We view our novel cue that extracts useful contex-
tual information from unlabeled regions as complementary
to existing cues, and can be easily integrated in most con-
textual models.
Fixed-granularity models: Many existing works commit
to a fixed granularity of contextual information. To incor-
porate scene-level information, Torralba et al. [26] use the
statistics of low-level features across the entire scene to
prime object detection. Hoiem et al. [13] use 3D scene
information to provide priors on potential object locations.
Park et al. [21] use the ground plane estimation as contex-
tual cues for pedestrian detection. Probabilistic models have



been proposed to capture the local interactions between
neighboring regions [12, 14, 17], objects [5, 9, 19, 22, 30],
or both [2, 10]. Sadeghi et al. [24] propose and detect visual
phrases which correspond to chunks of meaning bigger than
objects and smaller than scenes. While the visual phrases
in [24] are manually labeled in the dataset, our work can
be thought of as learning the visual phrases in an unsuper-
vised way. Our learned composites, however, may not have
a clearly defined semantic meaning. While most works fo-
cus on one level of interaction, Galleguillos et al. [10] ex-
plore contextual interactions at multiple levels. However,
this multi-level aspect is gained by explicitly using differ-
ent models for each interaction level. In contrast, our ap-
proach allows for adaptively picking different granularities
of contextual information within the same framework.
Leveraging unlabeled information: A natural way to in-
corporate information from unlabeled regions in images is
to build a global descriptor for the entire image to provide
contextual cues. Though global image statistics show great
potential in priming object detection [26], very modest im-
provement can be achieved when applied to datasets like
PASCAL (also confirmed in our experiments), where im-
ages have poor alignments due to the high variance in ob-
ject scales, poses, etc. [3]. Instead, local neighboring re-
gions tend to be more effective. Wolf et al. [29] sample
contextual information from pre-defined relative locations.
Dalal et al. [4] show that simply increasing the size of the
person bounding box by a small amount boosts the accu-
racy of pedestrian detection. This is equivalent to leverag-
ing potentially unlabeled regions in close proximity of the
object-of-interest. Our approach instead automatically and
adaptively determines the extent of contextual information
to be captured around different object categories. Felzen-
szwalb et al. [9] often detect parts that lie slightly outside
the sliding window, and use these detections to refine their
bounding box prediction. Lee et al. [15] utilize a few la-
beled categories to discover other object categories in the
‘background’ that have consistent appearance and are con-
textually coherent with the labeled categories. While simi-
lar in philosophy to our work, our solution is quite different,
as is the problem setting of enhancing object detection.

3. Approach
In order to extract contextual cues that exploit unlabeled

regions in images, we work in the most extreme setting
where only one object category is labeled (with bounding-
boxes) in the training dataset, leaving a large portion of the
images unlabeled. We can seamlessly incorporate more la-
beled categories in our approach, as we describe later.

Our goal then is to extract useful contextual regions,
given images labeled with ground-truth bounding-boxes for
just one object category i.e. the object-of-interest (OOI).
The ground-truth OOI may occupy different proportions of

(a) (b)
Figure 3. Context around objects (potted-plant and dog shown in yellow
boxes) can vary in extent (left) as well as content (right).

images across the dataset, as seen in Figure 3(a). Moreover,
images may exhibit different contextual settings, as seen in
Figure 3(b). To better model these, we first group the train-
ing images that exhibit similar contextual extent and content
(Sections 3.1 and 3.2). As stated earlier, we cast our prob-
lem of extracting a contextual region in a scene as that of
learning an object model, which we call contextual meta-
object (CMO), for which any off-the-shelf detector can be
used. Each cluster of images is used to train a different com-
ponent of our CMO detector (Section 3.3). During testing,
we run both the trained OOI and CMO detectors, and the
score of the latter provides contextual information for the
former. While any contextual reasoning model can be used
to integrate the two, in our implementation we adopt the
simple contextual re-scoring scheme from [9] (Section 3.4).

3.1. Contextual-extent-based clustering

We consider the contextual-extent of an image to be the
portion of the image that lies outside of and surrounds the
OOI. Intuitively, we wish to group all images that contain
the OOI with similar poses, at similar scales, and in similar
locations with respect to the rest of the scene.

We use all the training images, as well as their left-
right flipped versions. To enhance consistency in the data,
we first divide the images into 2 groups: one containing
images with the OOI ground-truth bounding boxes on the
right, and the other containing images with the OOI on
the left. We then employ the following procedure for both
groups. Consider an image Ii consisting of nB ground-
truth OOI bounding-boxes {Bj}, j ∈ {1, . . . , nB}. Ii

is described by a set of nB five-dimensional descriptors
F i = {f1, . . . , fj , . . . , fnB

}
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are the co-ordinates of the center of the

jth ground-truth OOI bounding-box in image Ii, and si
j ,

hi
j , and wi

j are the scale, height and width of the jth OOI
bounding-box respectively. This descriptor captures the ex-
tent of the contextual information in the image (in terms of
relative location and scale) with respect to the OOI present
in the image, as well as the aspect ratio of the OOI. For each
of the groups mentioned above, we cluster the descriptors
∪N

i=1F
i collected from allN training images containing the



OOI into K clusters using k-means clustering. This results
in a total of 2K context-extent based clusters of images. In
our implementation, we use K = 3.

For all images in the kth cluster, k ∈ {1, . . . ,K}, we de-
termine the extent of the CMO to be the largest bounding-
box surrounding the OOI such that the CMO is entirely con-
tained within at least 80% of the images in the cluster. This
bounding-box indicates the presence and extent of the CMO
we will learn via an off-the-shelf object detector. We note
that since the extent of the CMO is not tied to the OOI
bounding-box itself, and instead depends on the layout of
the OOI in the scene, it can freely capture any relevant in-
formation in the image, including unlabeled regions, at any
granularity. In fact, CMOs corresponding to the different
clusters capture contextual information at different granu-
larities for the same object category. We note that a train-
ing image Ii containing nB ground-truth OOI instances will
have nB corresponding instances of the CMO for training.

3.2. Contextual-content-based clustering
While we ensure that the extent of context is similar

among the images within the 2K clusters, the contextual
setting or content of the images could be quite varied (Fig-
ure 3(b)). We further cluster each of the 2K groups based
on their content. We extract gist [27] features within the
CMO box, and perform k-means clustering on these fea-
tures to divide each of the 2K groups into two clusters.
In our implementation, when less than 40 images are as-
signed to a cluster, we drop the cluster and re-assign the
corresponding images to the remaining clusters. Therefore,
we have M ≤ 4K clusters, which varies with categories.
For the PASCAL VOC 2007 dataset, we find a total of 198
clusters across the 20 categories. These clusters now have
CMOs defined that are consistent in appearance as well as
spatial relationships with respect to the OOI, and thus have
the potential to provide useful contextual information to en-
hance the OOI detection.

3.3. Training CMO detectors
We now describe how we use the above clusters to learn

our CMO detector. As stated earlier, we can use any off-
the-shelf object detector, which we treat as a black-box
parameterized by a model θ, learnt via a training proce-
dure ftrain that takes in training data of the form (P,N ).
P = {(I+

1 , B1), . . . , (I+
k , Bk)} is a set of positive image

and bounding-box pairs, and N = {(I−1 ), . . . , (I−l )} is
a set of negative images. The training procedure can be
viewed as

θ̂ = optimize ftrain (P,N ; θ) . (2)

The detector can then be evaluated on a test image I , via
the inference procedure finfer to obtain a detection (B, s)
including a bounding box B and a score s

(B, s) = finfer

“
I; θ̂
”
. (3)

We see that the above formulation holds for a variety of
detectors, be it sliding-window based [4, 9, 28] or hough-
transform based [16]. So how do we use one of these
black-box detectors to train our CMO detector using the
M clusters formed in Section 3.2? Instead of commit-
ting to the hard-clustering which was blind to the choice
of detector that would follow, we train an M-component
detector using an EM style approach, similar to the strat-
egy employed in [9]. We initialize the components using
the above clustering, and train M detectors to obtain θ̂m

using ftrain (Pm,Nm; θ), where Pm is the set of images
in the mth cluster and the CMO windows contained (Sec-
tion 3.1), and Nm are negative images. We then infer these
M components on all positive training images (across all
M clusters), and re-assign each “ground-truth” CMO box
B (Section 3.1) in the training set to the component that
best explains it:

m̃ = argmax
m∈{1,...,M}

(sm − tm) , (4)

s.t.(Bm, sm) =finfer

“
I; θ̂m

”
, overlap(Bm, B) > 0.5 (5)

where tm is a bias term used to normalize the scores across
the components, and is set to the 5th percentile of the scores
assigned by component m to all detections in the training
images. Each component m is now re-trained, but with the
new set of positive examples, to obtain an updated θ̂m, and
the iterations continue. We find that 3-5 iterations suffice.
During testing, all M components are evaluated on the test
image. Non-maximal suppression is used on the resultant
detections to eliminate repeated detections.

3.4. Contextual re-scoring
We now describe how we use our CMO to provide con-

text to the OOI detection. We evaluate our CMO as well as
the OOI detectors on the test image. The presence as well
as the location of the CMO can provide useful contextual
information. However in this work, we only consider the
presence i.e. the CMO detection score. Based on the CMO
detections, we wish to re-score the detected OOI bounding
boxes. While any contextual reasoning mechanism can be
used to this end (such as [6, 9, 11, 23]), we train a clas-
sifier, similar to Felzenszwalb et al. [9]. Let D be the set
of detections obtained for the OOI detector. Each detec-
tion (B, s), (B, s) ∈ D is formed of a bounding-box with
co-ordinates B = (xtl, ytl, xbr, ybr) (overloaded from pre-
vious sections) and a score s. Let sC be the score of the
highest scoring CMO detection (across all M components)
found in the image. To re-score an OOI detection (B, s),
we build a 6-dimensional descriptor consisting of the origi-
nal score of the OOI detection, the top-left and bottom-right
bounding box coordinates normalized by image size, and
the contextual information provided by the CMO detection,
captured via sC :

ψ1c = [σ(s) xtl ytl xbr ybr σ(sC)] (6)

where σ(x) = 1/ (1 + exp(−αx)), α = 1.5, as in [8].



aero bike bird boat bottle bus car cat chair cow table dog horse mbik pers plant sheep sofa train tv MEAN GAIN
Base w/o context [9] 28.9 59.5 10.0 15.2 25.5 49.6 57.9 19.3 22.4 25.2 23.3 11.1 56.8 48.7 41.9 12.2 17.8 33.6 45.1 41.6 32.3 –

Scene (∼ [26]) 30.9 56.6 11.5 18.5 23.1 49.1 58.1 21.0 23.1 23.9 25.1 12.3 59.9 47.7 42.1 12.3 19.1 33.5 45.4 40.7 32.7 3.21%
EXO (∼ [4]) 30.2 59.6 11.0 16.5 25.1 49.6 58.7 21.2 23.2 26.1 25.3 12.0 59.7 49.0 42.7 12.4 19.8 36.9 46.0 42.7 33.4 4.58%

CMO 30.5 60.1 11.2 17.0 26.7 49.7 59.1 23.3 23.4 26.9 29.3 13.2 59.7 49.3 43.0 13.4 20.4 37.8 46.8 43.3 34.2 8.39%

Table 1. Average precision (AP) for all 20 categories in PASCAL VOC 2007, mean AP across 20 categories, and the average relative improvement on 20
categories compared to the Base method. All methods listed use labels from only one object category. (∼[·]) means the method is similar in spirit to the
reference work.

This ψ1c descriptor is fed to a classifier h trained to sep-
arate correct OOI detections from false positives. The OOI
bounding-box B is assigned a new score s̃ = h (ψ1c). In
our implementation, the classifier h is an SVM with a poly-
nomial kernel (parameters set via cross-validation), simi-
lar to [8, 9]. The training data are obtained by running the
trained OOI detector on labeled training data, and collect-
ing correct detections and false positives. We note that ψ1c

uses labeled data from only one object category, and still
captures contextual information.

Our approach is not restricted to using labels from only
one object category. If more object categories are avail-
able, they can be seamlessly incorporated. A CMO detector
would be trained for each labeled object category. During
test time, let (D1, . . . , Dn) be the set of OOI detections
obtained for n different object categories (for PASCAL
n = 20 if all categories are considered). Let (sC1 , . . . , sCn

)
be the scores of the highest scoring CMO detections for
each of the corresponding n CMO detectors. The contex-
tual descriptor to re-score an OOI detection (B, s) ∈ Di is
now n+ 5 dimensional

ψnc = [σ(s) xtl ytl xbr ybr σ(sC1) . . . σ(sCn)] . (7)

Similar to traditional approaches that exploit context,
Felzenszwalb et al. [9] only use other OOI object categories
to provide context, via a descriptor

ψno = [σ(s) xtl ytl xbr ybr σ(sD1) . . . σ(sDn)] (8)

where sDi is the score of the highest-scoring OOI detection
from the ith OOI category. We note that this descriptor is
identical to the one used in [9], which we compare to in our
experiments.

Finally, a contextual descriptor capturing contextual in-
formation provided by all n CMO and OOI detectors is
given as

ψnco = [σ(s) xtl ytl xbr ybr γ(C) γ(D)] (9)

γ(C) = [σ(sC1) . . . σ(sCn)] (10)

γ(D) = [σ(sD1) . . . σ(sDn)]. (11)

A special case of Equation 9 for n = 1 differs from Equa-
tion 6 by one-dimension corresponding to σ(sD), the score
corresponding to the highest-scoring OOI detection. Since
the use of σ(sD) does not require additional training data,
and is obtained by using labeled data from a single object-
category, we replace Equation 6 with the following in our
experiments.

ψ1co = [σ(s) xtl ytl xbr ybr σ(sC) σ(sD)] (12)
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Figure 4. Left: The proportion of highest-scoring CMO detections on
positive testing images occupied by different content. Right: The average
proportion of a CMO component detection occupied by OOI. The truly
multi-granular nature of our learnt contextual cues is evident.

4. Experiments and Results
We evaluate our approach using the PASCAL VOC

20072 challenge dataset and protocol [7], which contains
9963 images of realistic scenes, containing ground-truth
bounding boxes for 20 object categories. While we pro-
vide results with other object detectors in subsequent ex-
periments, we first perform several comparisons and anal-
yses using the publicly available implementation [8] of the
state-of-the-art deformable parts-based object detector [9].

4.1. Quantitative results

We first provide several quantitative evaluations, fol-
lowed by some qualitative illustrations.

Useful contextual information from unlabeled regions:
We first evaluate whether our proposed cue captures use-
ful contextual information extracted from the unlabeled re-
gions. We compare the performance of the baseline OOI
detector to the contextually re-scored detector, using our
proposed cue as the source of contextual information as de-
scribed in Equation 12. The results can be seen in Table 1
(Base w/o context vs. CMO). We see that across all 20 cate-
gories, our method outperforms the state-of-the-art OOI de-
tector, indicating that our contextual cue does in fact extract
useful contextual information from unlabeled regions.

Further, in Figure 4 (left) we show the average propor-
tion of the CMO detections occupied by different contents
(OOI, other labeled categories, and unlabeled). We see that
almost half of the CMO detections cover unlabeled regions.
We also see that about 1/5 of the CMO detections capture

2We are not proposing a novel object detector. Instead, we will be
performing a variety of comparisons to demonstrate the effectiveness of
our proposed contextual cue. As recommended by the challenge organiz-
ers [7], we work with the 2007 test-set, which is the latest PASCAL test-set
with publicly available annotations.



aero bike bird boat bottle bus car cat chair cow table dog horse mbik pers plant sheep sofa train tv MEAN GAIN
20OOI ([9]) 31.2 61.5 11.9 17.4 27.0 49.1 59.6 23.1 23.0 26.3 24.9 12.9 60.1 51.0 43.2 13.4 18.8 36.2 49.1 43.0 34.1 7.57%

20CMO+20OOI 31.5 61.8 12.4 18.1 27.7 51.5 59.8 24.8 23.7 27.2 30.7 13.7 60.5 51.1 43.6 14.2 19.6 38.5 49.1 44.3 35.2 12.05%

Table 2. Average precision (AP) for all 20 categories in PASCAL VOC 2007, mean AP across 20 categories, and the average relative improvement on 20
categories compared to the Base method in Table 1). All methods listed use labels from all 20 categories.

# of labels for training fusion methods mean AP
Scene+EXO 33.6

1 CMO 34.2
Scene+EXO+CMO 34.4
20OOI 34.1

20 20OOI+20CMO 35.2
20OOI+Scene+EXO 34.6
20OOI+20CMO+Scene+EXO 35.3

Table 3. The mean AP across the 20 categories in PASCAL VOC 2007
for fusing various sources of contextual information.

other labeled categories in the images, even though our con-
textual cue does not use these labels to explicitly learn con-
textual relationships between the OOI and other categories.

Adaptive scaling helps: We now compare our contextual
cue to two cues that also exploit the unlabeled regions but at
a fixed granularity. The first cue (“Scene”) captures the en-
tire scene, and thus operates at the global granularity, sim-
ilar to the work of Torralba et al. [26]. We train a binary
RBF-kernel SVM classifier on the gist descriptors [27] ex-
tracted from the entire images to discriminate between im-
ages with and without the object-of-interest. We then use
the same re-scoring scheme in Equation 12, by replacing
the σ(sC) with σ(sg), where sg is the score of the gist-based
classifier for the test image. The second cue (“EXO”) is lo-
cal in nature. We expand the OOI bounding-box by a fixed
amount (similar to [4]) of 20% in all four directions. Instead
of training our CMO on the co-ordinates determined in Sec-
tion 3.1, we use this expanded OOI bounding-box to learn
a contextual “object” which we call EXO. We use the same
re-scoring scheme in Equation 12, by replacing σ(sD) with
σ(sE), where sE is the highest score of the EXO detections.
Note all three approaches only require labels from a sin-
gle object category. Table 1 shows that our approach CMO
outperforms both fixed-granularity methods. This demon-
strates our ability to effectively determine the granularity of
useful contextual interactions.

Further, Figure 4 (right) shows the distribution of the av-
erage proportion of CMO component detections occupied
by OOI. High values (right of the histogram) correspond to
contextual cues that capture local context around the OOI,
while low values (left of the histogram) correspond to mod-
els that capture scene level context with respect to a rel-
atively small OOI. The large variance in the distribution
demonstrates the truly multi-granular nature of the contex-
tual information learnt.

Complementary cue: We now test the ability of our pro-
posed cue to provide complementary contextual informa-
tion. We consider several different sources of context pop-
ularly explored in literature: the global scene-level context
(“Scene”) and local context (“EXO”) described above, as
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Figure 5. The effect of number of labeled categories on the average AP
(across 20 categories).

well as object-level context provided by other labeled ob-
jects in the images, be it a subset of the categories (nOOI)
or all 20 (20OOI). In Table 1 we saw that CMO performs
better than the global and local context individually. Table 3
shows that our proposed cue learnt from a single labeled
category is comparable to (slightly outperforms) the con-
textual information provided by all 20 labeled object cat-
egoires (20OOI). We note that 20OOI corresponds exactly
to the contextual approach used by Felzenszwalb et al. [9].
Hence, we see that our contextual cue performs better than
any of the individual sources of context, including ones that
utilize significantly more amounts of labels.

Similar to [6], we analyze the performance of fusing var-
ious sources of contextual information. We use the same re-
scoring method as described in Section 3.4 for combining
the different cues, since we wish to evaluate the informa-
tion captured by the cues, and not particular contextual rea-
soning techniques. Table 3 shows results of fusing differ-
ent combinations of the above mentioned contextual cues.
We append the highest score for each contextual cue be-
ing fused to re-score the OOI detection (similar to Equa-
tion 9). We see that our proposed cue individually performs
better than the combination of both global and local context
(Scene+EXO). Moreover, fusing our cue to these existing
sources of context provides a further boost in performance,
demonstrating the truly complementary nature of our cue
that extracts contextual information from unlabeled regions
at adaptive granularities.

We now compare our approach that leverages unlabeled
regions to learn contextual cues (nOOI + nCMO, Equa-
tion 9), to the baseline approach of [9] (nOOI, Equation 8)
that only utilizes other labeled categories, as the number
of labeled categories is varied. For each object category
(OOI), we pick n categories with highest mutual informa-
tion (based on co-occurrence of categories with the OOI
category across training data) to provide contextual infor-
mation. Figure 5 shows the trends. The green point at n = 0



OOI (mean AP) OOI+CMO (mean AP) Gain
ISM [16]∗ 12.6 15.6 23.8%

HOG-SVM [4]∗ 24.0 26.8 11.2%
Part-based Model [9] 32.3 34.2 8.4%

Table 4. Detection results with and without the proposed CMO as addi-
tional contextual information, by using different black-box detectors. [·]∗
indicates it is our implementation of the reference work.

gives the mean AP of the OOI detector using no context. We
can see that across the board, our approach leads to better
AP than [9] while using the same amount of labeled data,
demonstrating our effective use of unlabeled regions.

A break-down of the average AP across categories when
using all 20 labeled categories for both methods can be
seen in Table 2. We see that incorporating our contextual
cue that leverages unlabeled information in addition to the
20 labeled object categories (20OOI+20CMO) provides im-
provements over 20OOI ([9]) in 19 out of 20 categories and
matches the remaining category. We see that our contextual
cue on average provides a relative improvement of 12.05%
over the state-of-the-art detector. We observe significant
relative improvements of more than 20% in some categories
such as bird, cat, dining-table, and dog.

Other detectors: As mentioned in Section 3, our pro-
posed contextual cue can be extracted via any object detec-
tor, and can inturn be used to enhance the performance of
the detector for the OOI. We demonstrate that here. In ad-
dition to the sliding window part-based deformable model
(Parts-based Model) by Felzenszwalb et al. [9] that we use
in the above experiments, we consider two other popular de-
tectors: Implicit Shape Model (ISM) [16] which is hough-
transform based, and the HOG-SVM detector [4] (also slid-
ing window). These are used as the black-box modules to
train our CMO detectors, using the procedure described in
Section 3.3. Table 4 shows the mean AP across all 20 cate-
gories in the PASCAL 2007 dataset, achieved by our imple-
mentation of these detectors, with and without the context
provided by CMO. The results show that our proposed con-
textual cue CMO can be learnt via any detector, and consis-
tently improves the object detection performance with a sig-
nificant gain. Note that we use the same detectors for both
OOI and CMO, indicating that no additional techniques are
required for achieving these performance gains.

4.2. Qualitative results

Figure 6 shows some example CMO detections using
the deformable parts-based model [9] as the detector. As
quantitatively demonstrated earlier, we see that the CMO
bounding-boxes contain a lot of unlabeled regions that are
not labeled in the dataset, such as the sky region for aero-
planes, road for bicycle, coffee table and wall paintings
for sofa, windows for potted-plants, etc. Although our ap-
proach uses labeled data only from one object category to
learn the contextual cues, we learn meaningful relation-
ships among objects as well as object parts. For example,

Figure 7. The spatial maps indicate the likelihood of a person being
present given the CMO detections (red boxes). We see that the CMO pro-
vides strong priming for locations of OOIs.

the CMO detections for bicycle in the 2nd column of Fig-
ure 6 consistently include a person’s body as ‘parts’ of the
CMO. In the 5th and 6th columns, we show detections of
two CMO components corresponding to the person cate-
gory. We see that both components seem to capture two
people, but while the left-column models two people further
apart from each other, the right-column detects two people
close together. We also see intra-object CMO for cat in the
last column. The false-positives shown in Figure 6 clearly
demonstrate that our learnt CMO models fire at contextu-
ally relevant regions in images. Finally, as seen in Figure 4,
these examples qualitatively demonstrate that our cues can
adaptively learn contextual information at different granu-
larities in the scenes.

Encouraged by the meaningful spatial interactions ob-
served in Figure 6 (especially for the person category), we
elaborate on that aspect a little further. As we demonstrated
earlier, our learnt CMO models often include objects from
other labeled categories (e.g. the bicycle CMO often in-
cludes a person, a person CMO often includes another per-
son, etc.). By examining the CMO detections on training
images, we can learn a distribution of the location of each
labeled category in the dataset relative to our CMO models.
These spatial distributions can now be used as a prior to bet-
ter guide the detection of an OOI. We show a few examples
of these spatial maps in Figure 7. We also display the HOG
feature visualizations for the corresponding CMO. While in
this work we only leverage CMOs to provide co-occurrence
based context, exploring the potential of our models to cap-
ture scene configurations and provide explicit spatial prim-
ing for localizing objects is part of future work.

5. Conclusion

Regions that are not accounted for in the manually cho-
sen list of categories labeled in a dataset are often neglected
by existing works on contextual reasoning. In this work,
we exploit these unlabeled regions to extract adaptive con-
textual cues for enhanced object detection. We utilize the
labeled object bounding-box as an anchor to align scenes
and learn spatially consistent and visually identifiable con-
textual regions. The granularity of these regions is adap-



Figure 6. Examples of the detected contextual meta-objects (CMO). Each column shows the CMO detections for a specific category. From left to right:
aeroplane, bicycle, sofa, potted-plant, person, person, cat. Each image shows the highest scoring CMO detection. Red box indicates the CMO bounding-box,
while the white boxes represent the region-filters within the CMO as learnt by the deformable parts-based model [9]. The first four rows show true-positive
detections, and the last row shows false-positive detections. Please refer to the authors’ webpages for more results.

tively and automatically tuned for different categories, and
capture scene-level, inter-object as well as intra-object in-
teractions. We cast the problem of learning our proposed
contextual cue into that of learning object models. This al-
lows us to utilize any off-the-shelf object detector to learn
our proposed “contextual meta-objects”. We present con-
vincing quantitative and qualitative results on the challeng-
ing PASCAL VOC 2007 dataset, where we improve on the
performance of several object detectors, and compare fa-
vorably to existing sources of context. The benefits of the
adaptive granularity at which we extract context, and the po-
tential of our cue to provide complementary information in
addition to existing cues are also demonstrated. These im-
provements do not rely on advanced modeling techniques
or learning algorithms, and intelligently leverage existing
technology, making them widely accessible.
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