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Abstract. Given a collection of images of offices, what would we say we see in
the images? The objects of interest are likely to be monitors, keyboards, phones,
etc. Such identification of the foreground in a scene is important to avoid dis-
tractions caused by background clutter and facilitates better understanding of the
scene. It is crucial for such an identification to be unsupervised to avoid extensive
human labeling as well as biases induced by human intervention. Most interesting
scenes contain multiple objects of interest. Hence, it would be useful to separate
the foreground into the multiple objects it contains. We propose dISCOVER, an
unsupervised approach to identifying the multiple objects of interest in a scene
from a collection of images. In order to achieve this, it exploits the consistency
in foreground objects - in terms of occurrence and geometry - across the multiple
images of the scene.

1 Introduction

Given a collection of images of a scene, in order to better understand the scene, it would
be helpful to be able to identify the foreground separate from the background clutter.
We interpret foreground to be the objects of interest, the objects that are found fre-
quently across the images of the scene. In a collection of images of offices, for instance,
we may find a candy box in some office image. However, we would perceive it to be
part of the background clutter because most office scenes don’t have candy boxes. Most
interesting scenes contain multiple objects of interest. Office scenes contain monitors,
keyboards, chairs, desks, phones, etc. It would be useful if, given a collection of images
of offices, we can identify the foreground region from the background clutter/objects
and further more, separate the identified foreground into the different objects. This can
then be used to study the interactions among the multiple objects of interest in the scene,
learn models for these objects for object detection, track multiple objects in a video, etc.
It is crucial to approach this problem in an unsupervised manner. First, it is extremely
time consuming to annotate images containing multiple objects. Second, human anno-
tation could introduce subjective biases as to which objects are the foreground objects.
Unsupervised approaches on the other hand require no hand annotations, truly capture
the properties of the data, and let the objects of interest emerge from the collection of
images.

In our approach we focus on rigid objects. We exploit two intuitive notions. First, the
parts of the images that occur frequently across images are likely to belong to the fore-
ground. And second, only those parts of the foreground that are found at geometrically
consistent relative locations are likely to belong to the same rigid object.
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Several approaches in literature address the problem of foreground identification.
First of, we differentiate our work from image segmentation approaches. These ap-
proaches are based on low level cues and aim to separate a given image into several
regions with pixel level accuracies. Our goal is higher level, where we wish to separate
the local-parts of the images that belong to the objects of interest from those that lie on
background clutter using cues from multiple images. To re-iterate, several image seg-
mentation approaches aim at finding regions that are consistent within a single image
in color, texture, etc. We are however interested in finding objects in the scene that are
consistent across multiple images in occurrence and geometry.

Several approaches for discovering the topic of interest have been proposed such as
discovering main characters [1] or objects and scenes [2] in movies or celebrities in
collections of news clippings [3]. Recently, statistical text analysis tools such as prob-
abilistic Latent Semantic Analysis (pLSA) [4] and Latent Dirichlet Allocation (LDA)
[5] have been applied to images for discovering object and scene categories [6,7,8].
These use unordered bag-of-words [9] representation of documents to automatically
(unsupervised) discover topics in a large corpus of documents/images. However these
approaches, which we loosely refer to as popularity based approaches, do not incor-
porate any spatial information. Hence, while they can identify the foreground separate
from the background, they can not further separate the foreground into multiple objects.
Hence, these methods have been applied to images that contain only one foreground ob-
ject. We further illustrate this point in our results. These popularity based approaches
can separate the multiple objects of interest only if they are provided images that contain
different number of these objects. For the office setting, in order to discover the monitor
and keyboard separately, plSA, for instance, would require several images with just the
monitor, and just the keyboard (and also a specified number of topics of interest). This
is not a natural setting for images of office scenes. Leordeanu, et al. [10] propose an
approach to unsupervised learning of the object model from its low resolution video.
However, this approach is also based on co-occurrence and hence can not separate out
multiple objects in the foreground.

Several approaches have been proposed to incorporate spatial information in the
popularity based approaches [11,12,13,14], however, only with the purpose of robustly
identifying the single foreground object in the image, and not for separation of the fore-
ground into multiple objects. Russell, et al. [15], through their approach of breaking
an image down into multiple segments and treating each segment individually, can deal
with multiple objects as a byproduct. However, although from multiple segmentations,
they rely on consistent segmentations of the foreground objects.

Further on the object detection/recognition front instead of object discovery, object
localization approaches could be considered, with a stretch of argument, to provide
rough foreground/background separation. Part-based approaches, as is ours, however
towards this goal of object localization, have been proposed such as [16,17] which use
spatial statistics of parts to obtain objects masks. However, these are supervised ap-
proaches for single objects. Unsupervised part-based approaches for learning the object
models for recognition have also been proposed, such as [18,19]. However they deal
with single objects.
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Fig. 1. Flow of dISCOVER for unsupervised identification of multiple objects of interest
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Fig. 2. An illustration of the geometric consistency metric used to retain good correspondences

The rest of the paper is organized as follows. Section 2 describes our algorithm dIS-
COVER, followed by experimental results in Section 3 and conclusion in Section 4.

2 dISCOVER

Our approach, dISCOVER, is summarized in Fig. 1. The input to dISCOVER is a col-
lection of images taken from a particular scene, and the desired output is the identified
foreground separated into the multiple objects it contains.

2.1 Feature Extraction

Given the collection of images taken from a particular scene, local features describing
interest points/parts are extracted in all the images. These features may be appearance
based features such as SIFT [20], shape based features such as shape context [21],
geometric blur [22], or any such discriminative local descriptors as may be suitable for
the objects under consideration. In our current implementation, we use the Derivative
of Gaussian interest point detector, and SIFT features as our local descriptors.

2.2 Correspondences

Having extracted features from all images, correspondences between these local parts
are to be identified across images. For a given pair of images, potential correspondences
are identified by finding k nearest neighbors of each feature point from one image in the
other image. We use Euclidean distance between the SIFT descriptors to determine the
nearest neighbors. The geometric consistency between every pair of correspondences is
computed to build a geometric consistency adjacency matrix.
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Suppose we wish to compute the geometric consistency between a pair of correspon-
dences shown in Fig. 2 involving interest regions a and b in image1 and A and B in
image2. All interest regions have a scale and orientation associated with them. Let φa

be the similarity transform that transforms a to A. βA is the transformed ba, the relative
location of b with respect to a in image1, using φa. β is thus the estimated location of B
in the image2 based on φa. If a and A, as well as b and B are geometrically consistent,
the distance between β and B, d(B, β) would be small. A score that decreases exponen-
tially with increasing d(B, β) is used to quantify the geometric consistency of the pair
of correspondences. To make the score symmetric, a is similarly mapped to α using the
transform φb that maps b to B, and the score is based on max(d(B, β), d(A, α)). This
metric provides us with invariance only to scale and rotation, the assumption being that
the distortion due to affine transformation in realistic scenarios is minimal among local
features that are closely located on the same object.

Having computed the geometric consistency score between all possible pairs of cor-
respondences, a spectral technique is applied to the geometric consistency adjacency
matrix to retain only the geometrically consistent correspondences [23]. This helps
eliminate most of the background clutter. This also enables us to deal with incorrect
low-level correspondences among the SIFT features that can not be reliably matched,
for instance at various corners and edges found in an office setting. To deal with multiple
objects in the scene, an iterative form of [23] is used. However, it should be noted that
due to noise, affine and perspective transformations of objects, etc. correspondences of
all parts even on a single object do not always form one strong cluster and hence are not
entirely obtained in a single iteration, instead they are obtained over several iterations.

2.3 Foreground Identification

Only the feature points that find geometrically consistent correspondences in most other
images are retained. This is in accordance to our perception that the objects of interest
are those that occur frequently across the image collection. Also, this post processing
step helps to eliminate the remaining background features that may have found geomet-
rically consistent correspondences in another image by chance. Using multiple images
gives us the power to be able to eliminate these random errors which would not be con-
sistent across images. However, we do not require features to be present in all images
either in order to be retained. This allows us to handle occlusions, severe view point
changes, etc. Since these affect different parts of the objects across images, it is un-
likely that a significant portion of the object will not be matched in many images, and
hence be eliminated by this step. Also, this enables us to deal with different number
of objects in the scene across images, again, the assumption being that the objects that
are present in most images are the objects of interest (foreground), while those that are
present in a few images are part of the background clutter. This proportion can be varied
to suit the scenario at hand.

We now have a reliable set of foreground feature points and a set of correspon-
dences among all images. An illustration can be seen in Fig. 3 where only a subset
of the detected features and their correspondences are retained. It should be noted that
the approach being unsupervised, there is no notion of an object yet. We only have
a cloud of features in each image which have all been identified as foreground and
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Fig. 3. An illustration of the correspondences and features retained during feature selection. The
images contain two foreground objects, and some background. An illustration of the geometric
consistency adjacency matrix of the graph that would be built for this set up is also shown.

correspondences among them. The goal is to now separate these features into different
groups, where each group corresponds to a foreground object in the scene.

2.4 Interaction Between Pairs of Features

In order to separate the cloud of retained feature points into clusters, a graph is built
over the feature points, where the weights on the edge between the nodes represents the
interaction between the pair of features across the images. The metric used to capture
the interaction between the pairs of features is the same geometric consistency as com-
puted in Section 2.2, except now averaged across all pairs of images that contain these
features. While the geometric consistency could contain errors for a particular pair of
images due to errors in correspondences, etc. averaging across all pairs suppress the
contribution of these erroneous matchings and amplifies the true interaction among the
pairs of features.

If the geometric consistency between two feature points is high, they are likely to
belong to the same rigid object. On the other hand, features that belong to different
objects would be geometrically inconsistent because the different objects are likely to
be found in different configurations across images. An illustration of the geometric
consistency adjacency matrix can be seen in Fig. 3. Again, there is no concept of an
object yet. The features in Fig. 3 are arranged in an order that correspond to the objects,
and each object is shown to have only two features, only for illustration purposes.

2.5 Recursive Clustering

Having built the graph capturing the interaction between all pairs of features across
images, recursive clustering is performed on this graph. At each step, the graph is clus-
tered into two clusters. The properties of each cluster are analyzed, and one or both
of the clusters are further separated into two clusters, and so on. If the variance in the
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(a) (b)

Fig. 4. (a) A subset of the synthetic images used as input to dISCOVER (b) Background sup-
pressed for visualization purposes

adjacency matrix corresponding to a certain cluster (subgraph) is very low but with a
high mean, it is assumed to contain parts from a single object, and is hence not divided
further. Since the statistics of each of the clusters formed are analyzed to determine if it
should be further clustered or not, the number of foreground objects need not be known
a priori. This is an advantage as compared to plSA or parametric methods such as fitting
a mixture Guassians to the foreground features spatial distribution. dISCOVER is non-
parametric. We use normalized cuts [24] to perform the clustering. The code provided
at [25] was used.

3 Results

3.1 Synthetic Images

dISCOVER uses two aspects: popularity and geometric consistency. These can be
loosely thought of as first order as well as second order statistics. In the first set of exper-
iments, we use synthetic images to demonstrate the inadequacy of any of these alone.

To illustrate our point - we consider 50×50 synthetic images as shown in Fig. 4(a). The
images contain 2500 distinct intensity values, of which 128, randomly selected from the
2500, always lie on the foreground objects and the rest is background. We consider each
pixel in the image to be an interest point, and the descriptor of each pixel is the intensity
value of the pixel. To make visualization clearer, we display only the foreground pixels
of these images in Fig. 4(b). It is evident from these that there are two foreground objects
of interest. We assume that the objects undergo pure translation only.

We now demonstrate the use of pLSA, as an example of an unsupervised popular-
ity based foreground identification algorithm, on 50 such images. Since pLSA requires
negative images without the foreground objects we also input 50 random negative im-
ages to pLSA, which dISCOVER does not need. If we specify pLSA to discover 2
topics, the result obtained is shown in Fig 5. It can be seen that it can identify the
foreground from the background, but is unable to further separate the foreground into
multiple objects. One may argue that we could further process these results and fit a
mixture of Gaussians (for instance) to further separate the foreground into multiple ob-
jects. However this would require us to know the number of foreground objects a priori
and also the distribution of features on the objects need not be Gaussian as in these
images. If we specify pLSA to discover 3 topics instead, with the hope that it might
separate the foreground into 2 objects, we find that it randomly splits the background
into 2 topics, while still maintaining a single foreground topic, as seen in Fig. 5. This is
because pLSA simply incorporates occurrence (popularity) and no spatial information.
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Image pLSA: 2 topics pLSA: 3 topics dISCOVER

Fig. 5. Comparison of results obtained using pLSA with those obtained using dISCOVER

Hence, pLSA is inherently missing the information required to perceive the features on
one of the foreground objects any different than those on the second object and hence
separate them.

On the other hand, dISCOVER does incorporate this spatial/geometric information
and hence can separate the foreground objects. Since the input images are assumed to
allow only translation of the foreground objects and the descriptor is simply the intensity
value, we alter the notion of geometric consistency than that described in Section 2.2. In
order to compute the geometric consistency between a pair of correspondences, we com-
pute the distance between the pairs of features in both images. The geometric consistency
decreases exponentially as the discrepancy in the distances increases. The result obtained
by dISCOVER is shown in Fig. 5. We successfully identify the foreground from the back-
ground and further separate the foreground into multiple objects. Also, dISCOVER does
not require any parameters to be specified, such as number of topics or foreground objects
in the images. The inability of a popularity based approach to obtain the desired results
illustrates the need for geometric consistency in addition to popularity.

In order to illustrate the need for considering popularity and not just geometric con-
sistency, let us consider the following analysis. If we consider all pairs of images such
as those shown in Fig. 4 and keep all features that find correspondences that are geomet-
rically consistent with at least one other feature in atleast one other image, we would
retain approximately 2300 of the background features. This is because even for back-
ground, it is possible to find at least some geometrically consistent correspondences.
However the background being random, this would not be consistent across several
images. Hence, instead of retaining features that have geometrically consistent corre-
spondences in one other image, if we now retain only those that have geometrically
consistent correspondences in at least two other images, only about 50 of the back-
ground features are retained. As we use more images, we can eliminate the background
features entirely. dISCOVER being an unsupervised approach, the use of multiple im-
ages to prune out background clutter is crucial. Hence, this demonstrates the need for
considering popularity in addition to geometric consistency.

3.2 Real Images

In the following experiments with real images, while we present results on specific
objects, it is important to note that the recent advances in object recognition that deal
with object categories complement the proposed work. Since any particular features
are not an integral part of dISCOVER, it can be applied to object categories by using
appropriate features. However, the focus of our work is to identify the multiple objects
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Fig. 6. A subset of images provided as input to dISCOVER
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Fig. 7. (a) Visual results obtained by dISCOVER. The cloud of features retained as foreground
and further clustered into groups. Each group corresponds to an object in the foreground. (b)
Quantitative results obtained using dISCOVER.

of interest in the scene, and not object categorization. Hence, to illustrate our algorithm,
we show results on specific objects (however with considerable variations) using SIFT.

We first illustrate dISCOVER on a collection of 30 real images as shown in Fig. 6.
Note the variation in orientation, scale and view-point of objects as well as in lighting
conditions along with the highly cluttered backgrounds. We now use the descriptors as
well as geometric consistency notions as described in our approach in Section 2. The
results obtained are shown in Fig. 7(a). All background features have been successfully
eliminated and the foreground features have been accurately clustered into multiple
objects. In order to quantify the results obtained, we hand labeled the images with the
foreground objects. This being a staged scenario where the objects were intentionally
placed, the ground truth foreground objects of interest were known and hence such
an analysis is possible. The portion of features that were assigned to their appropriate
cluster in the foreground was computed as the accuracy of dISCOVER. The accuracy
is shown in Fig. 7(b) with varying number of images used as input. It can be seen that
while we need multiple images for accurate unsupervised multiple-object foreground
identification, our accuracy reaches its optimum with a fairly small number of images.

Let us now consider a real scene where the objects are not staged. Consider a col-
lection of 30 images such as those shown in Fig. 8. These are images of an office taken
at different times. Note the change in view-points, scale of objects and varying lighting
conditions. We run dISCOVER on these images, and the result obtained is as shown
in Fig. 9. The monitor, keyboard and CPU are identified to be the foreground objects.
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Fig. 8. A subset of images provided as input to dISCOVER

Fig. 9. Results obtained by dISCOVER. The cloud of features retained as foreground and further
clustered into groups. Each group corresponds to an object in the foreground.

This seems reasonable. The mouse is not identified to be the foreground object because
very few features were detected on the mouse, which were not stable across images
mainly due to the lighting variation and pose changes. The photo frame and the CPU
are clustered together. This is because these objects are stationary in all the input im-
ages and hence are found at identical locations with respect to each other (whenever
present) across images, and are hence perceived to be one object. This is an artifact
of dISCOVER being an unsupervised algorithm. Also, the bag next to the CPU is not
retained. This is because the bag is occluded in most images, and hence is considered to
be background. Overall, the foreground is successfully separated from the background,
and is further clustered into the different objects of interest it contains.

4 Conclusion

We propose dISCOVER, which, given a collection of images of a scene, identifies the
foreground and further separates the foreground into the multiple objects of interest it
contains - all in an unsupervised manner. It relies on occurrence based popularity cues as
well as geometry based consistency cues to achieve this. Future work includes loosening
the geometric consistency notion to deal with non-rigid objects, learning models for the
identified objects of interest for detection and studying interactions among the multiple
objects in the scene to provide context for robust object detection.
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