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Exploring Tiny Images: The Roles of
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Machine and Human Object Recognition
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Abstract—Typically, object recognition is performed based solely on the appearance of the object. However, relevant information also
exists in the scene surrounding the object. In this paper, we explore the roles that appearance and contextual information play in object
recognition. First, through machine experiments and human studies, we show that the importance of contextual information varies with
the quality of the appearance information, such as an image’s resolution. Our machine experiments explicitly model context between
object categories through the use of relative location and relative scale, in addition to co-occurrence. With the use of our context model,
our algorithm achieves state-of-the-art performance on the MSRC and Corel datasets. We perform recognition tests, for machines and
human subjects, on low and high resolution images, which vary significantly in the amount of appearance information present, using
just the object appearance information, the combination of appearance and context, as well as just context without object appearance
information (blind recognition). We also explore the impact of the different sources of context (co-occurrence, relative-location and
relative-scale). We find that the importance of different types of contextual information varies significantly across datasets.

Index Terms—Object recognition, context, tiny images, blind recognition, image labeling, human studies
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1 INTRODUCTION

T RADITIONALLY, research on recognizing object cate-
gories in images has focussed on appearance information

pertaining only to the object itself. For instance, parts-based
approaches [1], [2] recognize objects by localizing a set of
parts corresponding to the local appearance and structure of
the object. Popular datasets such as the Caltech datasets [3],
[4] have been constructed specifically for such a treatment,
where the object to be recognized is found in the center and
occupies a significant portion of the image.

In natural images, relevant contextual information about the
object also lies in the scene surrounding the object. Recently,
many works [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17] have attempted to move beyond a purely
appearance-based approach by incorporating context using
several approaches.

There exist several scenarios, as shown in Fig. 1 in which
an object’s appearance alone is clearly insufficient for recog-
nition. An example is shown in Fig. 1 (left), where without
the context of the rest of the scene (top), it would be hard
to recognize the keyboard (bottom). If the amount of intra-
class appearance variation is high, or the inter-class appearance
variation is low, context may be needed to disambiguate an
object’s category. For example, as shown in Fig. 1 (center),
clothing varies drastically in appearance and is mainly defined
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Fig. 1. Illustration of a few scenarios where contextual
information is necessary for effective recognition. Left:
Impoverished appearance information makes it hard to
recognize the keyboard in the image without contextual
information; Center: diverse appearance information for
the category clothes makes it difficult to build a consistent
appearance model to describe it; Right: Appearance infor-
mation is similar for two semantically distinct categories
of TV screen and computer monitor thus requiring con-
textual information to disambiguate.

by its position relative to the body. In Fig. 1 (right), some
object categories such as sky and water, or TV screen and
computer monitor have very similar appearance, and may
only vary in their relative locations and object surroundings.
Other scenarios include those where the amount of appearance
information may be limited due to bad image quality, viewing
of a scene from a distance, low image resolution, occlusion,
etc.

In this paper, we explore object level context in the scenario
of impoverished image data, where context is necessary.
Specifically, our goal is object recognition in extremely low
resolution images. The need for effective computer vision
in low resolution images has many practical standings. Low
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Fig. 2. Example of recognition using appearance alone
(a,d), using context alone, i.e. blind recognition (b, e) and
context and appearance combined (c, f) for low resolution
images (a, b, c) and high resolution images (d, e, f). For
low resolution images, context is necessary for recogni-
tion given the small amount of information provided by
the appearance, which is not the case for high resolution.
Hence, we advocate exploring context in low resolution
images.

resolution images are space efficient and allow for much faster
processing and streaming. Some devices such as older cell
phone cameras and web cameras often produce low quality and
low resolution images. Images of far away scenes, or images
of cluttered complex scenes result in the effective resolution
of the individual objects being quite small1.

Human studies performed in this paper verify that appear-
ance information alone is not enough to accurately recognize
objects in low resolution images. However, with the use of
context, we find that humans can recognize objects quite
reliably, as also observed by Torralba et al. [19]. In fact, for
the task of blind recognition where appearance information
is withheld and only contextual information is given to the
subject, recognition accuracy is roughly equal to that of using
appearance alone. Through additional human studies we show
the relative importance of various types of contextual informa-
tion, such as co-occurrence, relative location and relative scale
information. These studies verify that the task of recognition
in low resolution images is an interesting venue for modeling
context.

To study the automatic recognition of objects in low res-
olution images, we propose a segmentation-based approach.
Each segment is assigned an object label based on appearance
and contextual information learned from a training data set.
The beliefs in a segment’s labels are computed using a fully
connected Conditional Random Field (CRF) with the seg-
ments acting as nodes. Context is modeled using the pairwise
potentials of the CRF. This formulation allows us to use a
wide variety of contextual information, and to compare against
human performance in various studies.

Our contributions in this paper are as follows: We perform
object recognition in low resolution images; an appropriate
scenario for exploring context in which context is neces-
sary for accurate recognition. We model context explicitly,

1. This is demonstrated in the objects marked ‘difficult’ in the popular
PASCAL visual object category recognition dataset (see Fig. 23).

and incorporate inter-object relationships in terms of relative
location and scale in addition to object co-occurrence. To
explore the utility of appearance and contextual information
we perform tests on both low and high resolution images, using
just object appearance information, using context without
object appearance (blind recognition), and the combination
of appearance and context, as shown in Fig. 2. These tests
were performed both in human and machine experiments.
State-of-the-art performances are achieved on the MSRC [20]
and Corel [21] datasets. We also explore the roles of each
of the different sources of context such as relative location
and scale for machine (MSRC and Corel datasets) and human
recognition (MSRC and PASCAL [18] datasets), and report
some interesting findings.

The rest of the paper is organized as follows: Section 2
outlines some existing related work. Section 3 describes our
machine context model. Section 4 describes the experimental
set up for our human studies and machine experiments, and
provides results and related analysis on the roles of appearance
and contextual information in low resolution and high reso-
lution images. Section 5 describes our machine and human-
studies experimental set-up and results for exploring the im-
pact of different sources of context for humans and machines.
Section 6 raises some interesting points of discussion, followed
by a conclusion in Section 7.

2 RELATED WORK

2.1 Context:
Context is believed to play an important role in recognition
for humans [22]. Modeling meaningful contextual informa-
tion for better image understanding has received significant
attention in computer vision literature [23], [34]. A variety
of information sources may be used to model context. Global
scene information, such as global texture [8], [17] or 3D scene
information [6] can be used as context. Scene context can be
used to restrict the set of possible objects that may be present
in the scene, or to reduce the possible locations an object may
be present [6], [8], [9], [16], [17].

Context may also be modeled locally. The works of Shot-
ton et al. [11] and Fink et al. [13] modeled context using local
textures, while He et al. [10] proposed the use of multi-scale
features. Several approaches [10], [11], [12], [14] model short-
range interactions for the regularization of region or object
labels. The background information surrounding an object has
also been proposed for better localization [24]. In our work,
we provide human experiments that examine scene contextual
information, and local contextual information. For example,
subjects may be shown an entire image, or just the pixels
contained within a rough bounding box of an object. However,
the majority of our work examines the contextual relationships
between objects.

Numerous works attempt to model the contextual relation-
ships between objects [5], [7], [26], [27]. The early work of
Singhal et al. [15], used hand-modeled spatial relationships
between objects. Torralba et al. [7] detect easier to recognize
objects first, which in turn aid in the detection of harder
objects. Similarly, Heitz et al. [31] use easier to recognize
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textured regions in a scene (‘stuff’) to better detect objects
(‘things’). Hoiem et al. [6] use 3D information from multiple
object types by taking advantage of viewpoint information
about the scene. The use of a CRF to enforce co-occurrence
relationships between numerous objects was proposed by
Rabinovich et al. [5] and was later expanded to include spatial
relationships [27], [42] and hierarchical models [53]. In our
work, we also propose the use of CRFs to model the contextual
interactions of objects in our machine experiments. Recently,
discriminative models have also been proposed to model the
spatial layout of objects [55]. A study of various contextual
models for object recognition is provided by Divvala et
al. [34].

There exists several other areas of research exploring con-
textual information. An unsupervised approach to learning
object relationships is proposed by Parikh et al. [28], while
Lee et al. [32] discovers novel object categories using the
context provided by known categories. Gallagher et al. [29]
and Lin et al. [57] propose the use of other types of contextual
information, such as social context for analyzing personal
photo collections. Yao et al. [30] exploit contextual interac-
tions between the human pose and objects for activity analysis.
The potential of contextual information can be explored by
combining multiple visual sources [33], [34]. While most
works leverage context for higher level tasks such as recog-
nition and detection, Parikh et al. [25] exploit context for the
low-level task of computing saliency maps for images.

2.2 Segmenting objects:
In this paper, we focus on the task of detecting and segmenting
objects in a scene using contextual information. Several other
approaches have also been proposed for the detection and
segmentation task. A pre-computed color-based segmentation
of the image may be assigned object labels using appearance
and contextual information [5], [27], [42]. Pixel-wise segmen-
tation and detection of objects may be performed by grouping
patches using mean-shift [49]. Segmentations can be computed
by regularizing the local object labeling of pixels or patches
using MRFs [11], aspect models [50] or hierarchical CRFs
[53]. Top-down cues for image segmentation are explored by
He et al. [51]. Gould et al. [52] learn the relative locations of
objects and use this information to improve upon appearance-
based segmentation.

2.3 Low resolution images:
One conclusion of our paper is that the use of context is
critical when appearance information is impoverished, such as
when images are of low resolution. The use of low resolution
images has also been explored by Torralba et al. [19] for
the recognition of scene categories and object detection using
a large database of labeled tiny images. Efros et al. [35]
recognize human actions in distant videos where the effective
resolution of sportsmen is very small.

Human accuracies have been studied in low resolution
images for face recognition [36], [37], scene recognition [38],
[39], [19], [40] and more recently for object detection [41],
[19] and segmentations [19]. However, studies that separate

the roles of context from that of appearance as the amount of
appearance information varies, and evaluate the impact of the
different sources of context, have not been conducted.

3 APPROACH

In this section, we describe our machine approach to recogniz-
ing objects in low resolution images [42]. Descriptions of our
human studies, and comparisons to our machine algorithms
are given in later sections.

Our goal is to utilize context for recognizing objects in very
low resolution images. We obtain these low resolution images
by down-sampling images of higher resolution. The aspect
ratio of the original image is maintained while reducing the
larger dimension to 32 pixels. Torralba et al. [19] show that
humans can recognize objects in 32 × 32 images, which our
human studies also confirm. Further down-sampling results
in a significant degradation in performance [19], [40]. We
also apply our method to the original resolution images to
study the trade off between appearance and context in different
scenarios. The following discussion is common for images of
either resolution.

The task we consider is to semantically label every pixel
in an image. We approach this task at the region or segment
level since good spatial support is shown to significantly help
recognition [43], [44]. Hence, our task is to recognize the
content of every segment in an image from a pre-determined
list of C possible classes. In addition to the appearance
information pertaining to the region itself, which we refer to
as the data term, we wish to capture the interactions among
the different segments through context.

We model this through a fully connected pairwise Con-
ditional Random Field (CRF) similar to [5], where each
node corresponds to a segment in the image, and the edges
correspond to pair-wise contextual interactions between the
segments. In our experiments, the number of segments per
image was on average 7 and never exceeded 17, which made
such a model feasible. For more complex scenarios containing
a larger number of segments, the structure of the graphical
model should be intelligently chosen or learnt from data.

We define the conditional probability of our class labels
given the segments within our CRF as

P (c|S) =
1
Z

N∏
i=1

Ψi(ci)
N∏

i,j=1

Φij(ci, cj), (1)

where Z is the partition function. The data term Ψi(ci) com-
putes the probability of class ci given the appearance of seg-
ment Si ∈ {S1, . . . , SN}. The pair-wise potentials Φij(ci, cj)
capture the contextual information between segments using co-
occurrence statistics from training data at different locations
and scales.

3.1 Appearance
Our data term Ψi(ci) = p(ci|Si) depends on the texture,
shape and color of the segment. To incorporate the texture and
shape information, we use the TextonBoost [11] code [45] with
one modification. TextonBoost incorporates context through
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the appearance of surrounding texture patches. Since we
are interested in modeling context at the object level and
not implicitly through features, we trained TextonBoost on
individual objects and not entire images, using the ground truth
segmentations. Thus any contextual information captured by
TextonBoost from surrounding objects was removed. In our
experiments 700 rounds of boosting were performed instead
of 5000 as used in [11]. The resulting class likelihoods for
each pixel found by TextonBoost are averaged across each
segment to obtain a vector with length C equal to the number
of possible classes.

To incorporate color, we train a Gaussian Mixture Model
(GMM) for each class. We used 7 Gaussians per class in
the three-dimensional RGB space. The likelihoods for each
pixel are averaged across the segments to obtain a length C
vector. In order to combine the results of TextonBoost and the
color GMM to obtain Ψi(ci), we use an approach similar to
He et al. [10]. The two C length vectors are concatenated and
passed through a multi-layer perceptron neural network with
C outputs. We used 20 hidden layer nodes in our experiments
with a sigmoid transfer function.

3.2 Context

The edge-interactions Φij(ci, cj) capture the contextual infor-
mation between segments Si and Sj through co-occurrence
counts given the segments’ locations and scales. This is
modeled as

Φij(ci, cj) = [φij(ci, cj) + ε]η. (2)

In all our experiments, ε was fixed to be 1 and corresponds to
a weak Dirichlet prior. η was 0.02, which controls the effect
of context with respect to the data term. Further,

φij(ci, cj) = κ(ci, cj)λij(ci, cj)ϕij(ci, cj), (3)

where κ(ci, cj) captures the likelihood of classes ci and cj co-
occurring in the image, λij(ci, cj) represents the likelihood
of segments Si and Sj co-occurring at their observed loca-
tions given assignments to classes ci and cj , and similarly
ϕij(ci, cj) represents the likelihood of segments Si and Sj
co-occurring with their observed scales given assignments to
classes ci and cj . We describe these next.

3.2.1 Co-occurrence:
κ(ci, cj) is the empirical probability of classes ci and cj co-
occurring in an image. This is learnt through MLE counts from
the labeled training data.

3.2.2 Location:
We model the location of a segment in an image using a
Gaussian Mixture Model with L = 9 components. For our
experiments the Gaussian means are centered in a 3× 3 grid
with standard deviations in each dimension equal to half the
distance between the means. We define the value αl(li) as the
average likelihood of Si’s pixels being in component l ∈ L.
Since most images have a horizontal layout we also tried

using only 3 bins spaced vertically apart, but the results were
significantly worse. The value of λij(ci, cj) is computed as

λij(ci, cj) =
L∑
li=1

L∑
lj=1

αl(li)αl(lj)θl(li, lj |ci, cj), (4)

where θl(li, lj |ci, cj) are parameters estimated from training
data through MLE counts. More specifically, θl(li, lj |ci, cj) is
the empirical probability of the segments Si and Sj occurring
at locations li and lj given their assignments to classes ci
and cj . It should be noted that this is a joint distribution, and
thus includes both the absolute location and relative location
statistics i.e. θl(li, lj |ci, cj) combines the information θl(li|ci)
and θl(lj |li, ci, cj). Since the absolute location is measured
relative to the image, the statistic θl(li|ci) can be viewed as
contextual information relative to the entire image.

3.2.3 Scale:
The scale is defined as the proportion of the number of pixels
in the segment with respect to the number of pixels in the
image. As a result, the scale for each segment has a value
between 0 and 1. Similar to location, we model the scale
using a GMM. The GMM has K = 4 components with means
evenly spaced between 0 and 1. The standard deviation of the
components are set to half the distance between the means.
We define αs(si) as the likelihood of a segment belonging to
scale si. ϕij(ci, cj) is then computed as

ϕij(ci, cj) =
K∑
si=1

K∑
sj=1

αs(si)αs(sj)θs(si, sj |ci, cj), (5)

where θs(si, sj |ci, cj) are parameters estimated from training
data through MLE counts. Again, θs(si, sj |ci, cj) is the empir-
ical probability of segments Si and Sj having scales si and sj
given their assignments to classes ci and cj . As with location,
the absolute and relative scale statistics are both captured here.

3.2.4 Inference
We use Loopy Belief Propagation to perform approximate
inference on the CRF using a publicly available implementa-
tion [46]. After convergence, the label with maximum belief is
assigned to the segment. A sampling based inference technique
could also be used as in [5].

Using equation (3) we maintain the simplicity of the model
proposed in [5], which uses just co-occurrence counts, while
capturing richer information through relative location and scale
statistics. The proposed model also allows for the straight-
forward incorporation of additional contextual information,
such as relative 3D orientations if available, using the same
formulation. We do not do any parameter learning to explicitly
increase the likelihood of the training data under our model.
Although the current treatment suffices for our purposes,
explicit parameter learning such as in [5] may further boost
performance.

4 LOW RESOLUTION VS. HIGH RESOLUTION
In this paper we present two sets of results on human and
machine accuracies. The first set of experiments studies the
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Fig. 3. Low resolution images from the MSRC (top)
and Corel (bottom) datasets. The larger dimension is 32
pixels. The objects are often very small, for instance there
are only 4 pixels in the faces in the top left image.

effect of context on recognition in high resolution vs. low
resolution images. In the following section, we present our
second set of results studying the use of various types of
contextual information.

We study recognition on high and low resolution images
using the MSRC dataset [20] and a subset of the Corel
dataset [21]. The MSRC dataset contains 591 images with
pixel-wise labels coming from 23 classes. Following previous
works, we remove 2 classes (horses and mountain) because of
very few training instances. The Corel dataset consists of 100
images with labels coming from 7 classes. As stated earlier,
we work with images at their original resolution (∼ 320×320)
pixels, as well as at low resolution (∼ 32×32 pixels). In both
datasets, a random subset of 45% of the images were used
for training, 10% for validation and the rest for testing, while
maintaining consistent class distributions in these three sets,
similar to [11]. We show sample low resolution test images
from both datasets in Fig. 3. We first present our machine
vision results, followed by a description of our human studies
setup and associated results, and finally some analysis of the
results obtained.

4.1 Machine Results
For consistency with the human studies (described later), we
use the ground-truth segmentations of the images for our first
set of experiments (later results use automatic segmentation).
We experiment with low and high resolution images, using
appearance information alone, contextual information alone
(blind recognition) and both appearance and context (entire
image). In the appearance-only scenario, the MAP estimates
of the data terms were used to label the segments. For blind
recognition, the data term corresponding to the segment to be
recognized was set to a uniform distribution before running
inference on the CRF2.

The results obtained on the MSRC and Corel datasets are
shown in Fig. 4. We use a random subset of 265 images of the
MSRC dataset. The results on other random splits are consis-
tent with those shown here. There are several observations we
can make. First, the need for context is minimal in the original
high resolution images. Appearance alone performs at 86%
accuracy on the MSRC dataset, with context increasing perfor-
mance by 3%. Secondly, appearance provides less information

2. Malisiewicz et al. [47] also evaluate their proposed contextual model
and other baselines in a blind recognition setting.
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Fig. 4. The recognition accuracies of human subjects
and machine on low and high resolution images from
the MSRC and Corel datasets using appearance alone
(app), blind recognition using context alone (blind) and
both appearance and context (all).

in low resolution images as seen by the drop in accuracy from
86% to 65%. In the scenario of low resolution images, we
see that combining appearance and context significantly boosts
performance over each individually, to 78% for MSRC and
87% for Corel. It is interesting to note that identical context
models were used for images of both resolutions, while the
appearance information was trained separately.

We also perform the same experiments with automatic
segmentations. We use the Felzenszwalb and Huttenlocher [48]
segmentation algorithm (example segmentations are shown
in Fig. 5). We find that the use of automatic segmentation
does not harm performance significantly. This can be partly
attributed to the fact that the training images were also seg-
mented using the same algorithm, resulting in a better match
between the training and testing images. Moreover, the ground
truth segmentations provided with the MSRC dataset are quite
coarse, resulting in the automatic segmentations not being
qualitatively very different. Our results are shown in Table 1
along with a comparison to results from previous works when
available. In addition to the segment-wise accuracies metric
we have used so far, we report pixel-wise accuracies as well.
To obtain a pixel-wise label map from our model, all pixels
falling within a segment were assigned the segment’s predicted
label. Only the pixels that were assigned a label in the ground-
truth labeling were considered while computing the accuracy
(void pixels were ignored). For our own algorithm, we report
results on original (high) resolution images that all other works
use, as well as on low resolution images. We report average
class-wise accuracies, as well as overall accuracies (within
parentheses). Even when using low resolution images, our
algorithm outperforms previous works on these datasets.

We believe this is due to several reasons. He et al. [10]
and Shotton et al. [11] make decisions at the level of pixels
or small patches, while we do so on segments which requires
only a few decisions per image. This also allows us to train on
segments making the training information more reliable due to
inherent aggregation and grouping. Our explicit use of color
was found to give a significant boost in performance. A notable
observation is that the difference between our average class-
wise accuracies and overall accuracy is not very large. Since
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TABLE 1
Comparisons of accuracies *

MSRC Corel

pixel segment** pixel segment

Shotton’06 [11] 58(72) – (71) – (75) –

Yang’07 [49] 62(75) – – –

Verbeek’07 [50] 64(74) – – –

He’04 [10] – – 81(80) –

He’06 [51] – – – (81) –

Rabinovich’07 [5] – – (68) – –

Gould’08 [52] – (77) – – –

Ladicky’09 [53] 75(86) – – –

High 85(91) 84(89) 94(93) 95(93)

Low 81(83) 77(81) 86(86) 85(84)

. * Different splits may have been used for training and testing data **
Segment-wise accuracies may not be directly comparable because the exact
settings under which the accuracies were computed may differ

we model context, we have good performances consistently
across categories, including those that have varied appearances
and are also less frequent that appearance-based approaches
perform poorly on.

4.2 Human Studies Set-up
Our human studies were performed on the MSRC dataset
using 11 subjects. The task assigned to them was to identify
the outlined segment in the displayed image. We replicate
the machine experiments in our human studies. Each subject
had to complete two sessions. The first session was on the
low resolution images and the second on the original images.
In each session, there were three scenarios under which the
subjects had to recognize the segments. The first studied
appearance-based recognition by only displaying the segment
to be recognized without the rest of the image, Fig. 2(a, d).
The second studied blind recognition in which the subject
was shown the image with the pixels removed from the
segment to be recognized, Fig. 2(b, e). The final scenario
displayed the entire image allowing the subject to use both
appearance and contextual information for recognition, Fig.
2(c, f). In each scenario the images were displayed with the
segment outlined, as well as without the segment outlined
to avoid distraction. For low resolution images, the images
were displayed at four different scales (32 × 32, 64 × 64,
128 × 128 and 256 × 256) using bicubic interpolation so
that the subjects could focus on whichever scale they desired,
without increasing the amount of information being displayed
[19]. The list of possible classes from which the subjects
could choose was displayed below the images, as shown in
Fig. 6. Each subject was asked to recognize 70 segments for
each scenario for each resolution (a total of 420 segments
per subject). The segments to be recognized were selected
randomly from a total of 650 segments in the 265 images
per resolution. For consistency, we use the same 265 images
of the MSRC dataset for testing as were used in the above

Fig. 5. Illustrations of automatic segmentations.

Fig. 6. A snapshot of the interface used for human studies
on low resolution images for blind recognition.

machine experiments. On average, subjects took 35 minutes
to complete the entire study. The segment boundaries were
marked using the ground truth segmentations provided with
the MSRC dataset.

4.3 Human Studies Results

The accuracies of the subjects, computed as average class-
wise accuracies, are shown in Fig. 4. We see very similar
trends in the human numbers as with those from the machine
experiments. The need for context is minimal in the original
high resolution images. Appearance alone performs at 96%
accuracy with context increasing performance by 2%. Sec-
ondly, appearance provides less information in low resolution
images as seen by the drop in accuracy from 96% to 66%.
Interestingly, blind recognition using context alone provides
a similar accuracy of 67% for low resolution images. The
combination of appearance and context increases accuracy by
a statistically significant amount to 89%. This is in agreement
with Torralba et al.’s observations that human recognition in
32×32 images does not reduce drastically as compared to full
resolution images, and we demonstrate here that this is due to
inclusion of context. These experiments further support our
claim that low resolution images are an interesting venue for
modeling context.

It should be noted that the subjects were given a choice of
21 possible category labels. Experiments in which the set of
labels is unknown and determined by the subject may yield
different results. For some objects the segments are not exact
so small amounts of surrounding information, such as grass,
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Fig. 7. Confusion matrices of the human studies and
machine experiments on the MSRC dataset using the
ground truth segmentations (low resolution images).

may be present for the appearance only tests. Finally, for the
task of blind recognition the information inside the segment
was removed. However, the rough shape of the segment was
still visible and in some cases can supply appearance based
information, making the experiment not completely ‘blind’.
As a result, the accuracies of the blind recognition tests may
be artificially high.

4.4 Humans vs. Machine:

Fig. 7 shows the (normalized) confusion matrices of humans
and machines on the low resolution images of the MSRC
dataset (since the accuracies on the high resolution images
are high, we do not show those confusion matrices). While
the confusion matrixes show some commonalities, there are
significant differences. The four categories from the MSRC
dataset that got the highest boost in performance on low
resolution images by incorporating context for the human
subjects were found to be Body, Face, Water and Boat. The
top four categories for the machine were Body, Boat, Building
and Sheep, but not Face and Water. This is due to the fact that
appearance based recognition for Body and Boat was poor
(0% and 30%), having little potential to boost performance
of contextually complementary categories such as Water and
Face. Moreover, the latter were already reliably recognized
(85% and 100%), leaving little room for further improvement.

4.5 High Resolution vs. Context

To compare the category pairs in the human studies that ben-
efited the most from incorporating context to those that bene-
fited the most from incorporating high resolution information,
we determine the proportion of the top n (for n = 50 & 200)
category pairs with most reduction in confusion that are in
common between the two. A similar analysis is repeated for
the machine experiments. The results obtained can be seen
in Fig. 8. We find that the two are in fact correlated, which
indicates that the category pairs with low accuracies using low
resolution appearance information, can benefit from additional
information - be it in the form of context, or high resolution
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Fig. 8. Evaluating the overlap between pairs of categories
that benefitted the most from incorporating context and
from incorporating high resolution information, in humans
studies and machine experiments.

appearance information. And as our earlier experiments show,
once we incorporate high resolution information, context does
not provide further boosts in performance. This once again
stresses the potential of using low resolution images to model
context, as opposed to high resolution images.

4.6 Human Subjects Behavior

We analyzed several aspects of our human studies, that we
summarize below:

• The median time taken by subjects to respond to low-
resolution images with missing data (appearance alone or
context alone) was ≈ 4.75 seconds, while that for high
resolution images or entire low-resolution images was
≈ 2.75 seconds. This is expected since low-resolution
images with missing information are ambiguous. It is
interesting that the time taken on entire low-resolution
images is comparable to that of high resolution images
containing contextual information alone.

• If we compare the time taken by subjects, the consistency
in responses, and their accuracies (Fig. 4), we see that
they all follow a similar trend. Subjects are inaccurate,
take longer and are inconsistent among themselves when
shown low resolution images with missing information.
When shown high resolution images with appearance
information alone or entire images, subjects are accurate,
quick and consistent among themselves. We quantify this
correlation and indeed find that these quantities are highly
correlated (pair-wise correlation coefficient of 0.98).

• We find that the correlation between the average time
taken by each of the subjects (averaged across the differ-
ent scenarios), and their overall accuracy is about −0.4,
indicating that how long a subject takes to respond is not
an indicator of their accuracy on the tasks. We should
note that the difficulty of the tasks themselves has been
marginalized out (since we average across the different
scenarios).

• We hypothesized that subjects may improve in accuracy
as they perform more tests on the same dataset. Surpris-
ingly, we find that the accuracy of the human subjects in
the first half of each scenario was not lower than their
accuracies in the second half.
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5 DIFFERENT SOURCES OF CONTEXT

In this section, we describe human and machine experiments
using different sources of context for recognition. These in-
clude the use of co-occurrence, relative location and relative
scale of objects. In these studies, we use the MSRC [20],
Corel [21] and PASCAL 2007 [18] datasets. The MSRC
and Corel datasets have shape information available from
ground truth segments, where PASCAL 2007 only has object
bounding boxes. As a result, the PASCAL dataset does not
supply shape information for the task of blind recognition.
However, some contextual information may be available in the
bounding box when performing appearance-based recognition.
The number of categories is similar between the MSRC and
PASCAL datasets (21 categories in MSRC, 20 categories in
PASCAL 2007), while Corel has 7 categories. The images
in PASCAL 2007 are more natural with a large portion
of many images not containing any of the 20 objects of
interest. Machine experiments were performed on MSRC and
Corel, and human experiments were performed on MSRC and
PASCAL 2007.

We do not perform machine experiments on PASCAL for a
couple of reasons. First, given the poor performance of state-
of-the-art techniques at recognizing objects in the PASCAL
dataset, attempting the task in 32 × 32 images is likely to
lead to very noisy predictions. Inconclusive results would be
generated by the contextual models given the poor initial
information. Second, and perhaps more importantly, as also
noted recently by Choi et al. [54], the PASCAL dataset does
not contain interesting contextual interactions. About 50% of
the PASCAl images contain only one object (as compared
to 22% in MSRC) and 55% of the pixels in the PASCAL
images are unlabeled (as compared to 28% in MSRC). More-
over, the PASCAL dataset pre-dominantly consists of people,
leading to an entropy of 2.9 of the distribution of object
occurrences (as compared to 4.0 in MSRC). It is interesting to
view the relative-location contextual statistics for the MSRC
and PASCAL datasets (Fig. 9). Bright entries correspond to
higher occurrence-statistics. The relative-location statistics are
displayed via a 5× 5 matrix for each category pair, indicating
how often the second category (indicated by the column) is at
that particular relative location with respect to the first category
(indicated by the row). Overall, we see that the MSRC dataset
has more interesting contextual interactions, where as the
PASCAL dataset is dominated by the Person category, which
co-occur with most other categories in the dataset. We note
that these statistics are an artifact of the labeling of the
PASCAL images, and not the images themselves (which are
more realistic than MSRC). Hence, PASCAL still provides
a useful scenario to conduct human studies, which to some
extent are not bound by the labels in the images.

5.1 Machine Results
Next, we present analysis on machine experiments using
different forms of context (co-occurrence, relative location and
relative scale). Average class-wise accuracies using both low
and high resolution images from the MSRC and Corel datasets
for each of the different forms of context are summarized in
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Fig. 9. MSRC (left) and PASCAL (right) relative-location
statistics.
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Fig. 10. Machine recognition accuracies on the MSRC
and Corel datasets using different sources of context.

Fig. 10. The Corel dataset has fewer classes and the only
prominent interactions are the co-occurrence of Polar Bear
with Snow, and Rhino/Hippo with Water. Hence, while co-
occurrence gives a significant boost in performance on the
Corel dataset, relative location and relative scale do not. For
MSRC, which is a richer dataset, all forms of context give a
significant boost on low resolution images.

Fig. 11 shows the per class accuracies on low resolution
images of the MSRC dataset using only appearance, and
subsequently adding the three forms of context. We can see
that different object categories benefit from different forms
of context. Some categories such as Book and Chairs do
not receive any benefit from context due to peculiarities of
the dataset, such as they rarely co-occur with other objects
(Fig. 12). Categories such as Body and Boat gain significantly
from context. Their appearance cues are very weak (0% in
the case of Body), but they are very strongly associated
with other categories (Face and Water respectively) whose
appearance cues are quite reliable. In fact, for some categories
such as Body and Building, blind recognition performs much
better than appearance information alone as well as combined
appearance and context. In several categories, relative scale
does not provide a boost in performance. This may be due to
lack of scale related dependencies due to inherent semantics
of the categories, or due to depth variations of the objects
across images, to which our scale measure is not invariant. The
independence of scale is automatically learnt by our model.
In some categories, albeit rarely, certain forms of context
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Fig. 11. Average machine accuracies for the 21 categories in the MSRC dataset using appearance alone, using blind
recognition with context alone, and using subsequently more complex context models with appearance.

Fig. 12. Images in the MSRC dataset containing books.
They occur at similar locations across images, and rarely
interact with other categories. Contextual information
does not boost the performance of such categories.

hurt performance. This may be attributed to a category’s
strong dependence on categories with poor appearance cues.
For instance, Sign commonly co-occurs with Building whose
appearance term has 0% accuracy.

In Fig. 13 several examples are shown where different types
of context helped recognition. Let us consider the last example,
where the test image contains Tree, Car, Road and Sky. The
appearance alone labels the objects as Tree, Cat, Road and
Sky, but the very low likelihood of finding a Cat on the Road
along with Tree and Sky made the co-occurrence information
flip the label of the Cat to a Building. The location of the
Building seems consistent with respect to the Tree, Road
and Sky - so the relative location information left the labels
untouched. However, the relative scale information discarded
the possibility of the Building being so small with respect to
the Sky, Tree and Road, and flipped the label of the Building
to Car - which matches the ground truth labeling. Examples
of incorrect labels provided by the context model are shown
in Fig. 14.

5.2 Human Studies Set-up
Next, we study the various sources of context leveraged by
humans for recognition. To this end, we perform a series
of human studies on Amazon Mechanical Turk using low-
resolution images, for which contextual information plays a
key role in recognition. In each experiment, the object to be
recognized is identified by drawing a red border around it.
An image without the red border is also shown in case the
red border proves distracting. Unlike the set-up described in
section 4.2, we do not display the objects at four different
scales. We use a fixed scale that the authors found most
comfortable for recognition. We conduct these studies on two
datasets: the MSRC dataset containing 625 segments extracted
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Fig. 13. Illustrations of the effects of different forms
of context on recognition. A → appearance, CO → co-
occurrence, L→ relative location, S→ relative scale.

from 265 images and the PASCAL 2007 dataset consisting of
897 objects from 394 images. In order to study the role of
different sources of contextual information, we designed the
following visualizations using ground truth segmentations (for
MSRC) and bounding boxes (for PASCAL).
Appearance: As a baseline, we present only appearance
information to the subject, i.e., the object is shown in isolation
without additional image information. An example is shown
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Fig. 14. Illustrations of incorrect labelings provided by the
context model.

AppApp

69%

Fig. 15. Low resolution and high resolution appearance
information alone (Left: MSRC, Right: PASCAL).

in Fig. 15.
Co-occurrence: We visualize co-occurrence by displaying all
labeled objects in the scene side-by-side as shown in Fig. 16.
Information about the location and scale of these objects is not
available (the objects are scaled to the same size). The object to
be recognized is shown with and without a red border, and the
remaining objects are shown with and without grey borders.
Relative-location: For relative-location, we display the la-
beled objects in the same relative locations as they appear in
the image, as seen in Fig. 17. All objects are scaled to the same
size to remove relative scale information. To avoid overlap
of the rescaled objects, the distances between the centers of
objects are increased but the relative distances and orientations
are kept consistent with the original image.
Relative-scale: The relative-scale visualization is similar to
the co-occurrence visualization, but the objects are shown at
their true relative scales, i.e. they are not rescaled to the same
size. An example can be seen in Fig. 18.
All sources of context combined: We used two visualizations
to display relative-location and relative-scale information si-
multaneously. The first displays all the pixels from labeled ob-
jects in the intact image, and the ‘void’ pixels from unlabeled
objects are shown as white. Examples can be seen in Fig. 19
(left), which we call all-no-void. The second visualization
(called all-exploded) is shown in Fig. 20 in which additional
white space is added between the objects. The relative-location
and relative-scale information is available (i.e. all-exploded
has the same information as all-no-void), but is similar to the
relative-location visualization. This allows us to determine if
our choice of visualization affected subjects’ accuracies. We
note that for PASCAL images, a large portion of the images
are often void.
Blind recognition: For sake of completeness and consistency
with previous human studies, we also conduct the blind
recognition test, where the entire image (including the regions
of an image that may be void) is shown, and the pixels
belonging to the object of interest are not displayed. Examples
can be seen in Fig. 19 (middle). Unlike the MSRC dataset, in
the PASCAL dataset the shape information of the object to be
recognized is not available and contextual information within
the bounding box is lost.
Entire image: We also determine human subjects’ accuracy

Different Sources of Context: CoocDifferent Sources of Context: Cooc

74%

Fig. 16. Co-occurrence information (top: MSRC, bottom:
PASCAL).

Fig. 17. Relative-location information (lef: MSRC, right:
PASCAL).

at recognizing objects when the entire image is available.
Examples can be seen in Fig. 19 (right). As compared to ‘all-
exploded’ and ‘all-no-void’, the entire image has two extra
sources of information. The first are the void regions of the
image that could contain useful contextual information. Sec-
ond, access to the entire natural image may enable extraction
of other sources of information besides relative location and
scale, such as 3D geometric contextual cues.
High resolution appearance: Finally, we test human subjects’
on recognizing the same objects in high resolution images,
without any contextual information, as seen in Fig. 15.

5.3 Human Studies Results

In this section we present results of the human studies
using different sources of context as described above. We
obtained responses from 10 subjects on Amazon Mechanical
Turk for each test instance. Since the reliability of subjects
on Mechanical Turk is variable, we only retain the three
responses for each question from the most accurate subjects.
We found this calibration step to provide accuracies similar
to the authors’ accuracies on the same tasks. This may result
in accuracies that are artificially high by a small amount. For
instance, if the subjects chose their responses randomly and
we picked the three highest scores, an accuracy of about 8%
would be found. This is slightly higher than the accuracy of
random responses without a filtering step (≈ 5%). However,
the relative accuracies of our various tests should be consistent.

We now look at the influence of the different sources of
context on the human recognition accuracies, as shown in
Fig. 21. For the MSRC dataset, we find that co-occurrence and
relative-location information provide a boost in performance.
However, we see that incorporating the relative-scale informa-
tion does not provide an improvement in performance over co-
occurrence information, or over relative-location information.
The choice of visualization, all-exploded or all-no-void, for
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Different Sources of Context: Rel‐scaleDifferent Sources of Context: Rel scale

73%

Fig. 18. Relative-scale information (top: MSRC, bottom:
PASCAL).

Different sources of Context: AllDifferent sources of Context: All

80%

Fig. 19. Left to right: All contextual information via the all-
no-void visualization, blind recognition and entire image
(top: MSRC, bottom: PASCAL).

displaying relative-location and relative-scale information does
not affect the subjects’ accuracies. We also see that the
image regions that are marked as void in the ground truth
segmentations do provide useful contextual information, which
would explain the increase in accuracy from ‘all-no-void’ to
‘all’ (entire image)3.

The PASCAL accuracies are lower overall when compared
to the MSRC dataset, especially for appearance informa-
tion alone and contextual information alone (blind). As with
MSRC, we see that relative-scale statistics do not boost recog-
nition performance. Moreover, even relative-location cues
seem to be quite weak. This is consistent with our obser-
vation that the relative-location statistics of PASCAL have
less variation than MSRC, Fig. 9. Interestingly, even though
a larger portion of the PASCAL images were marked void,
the gap between the accuracies using the entire image, and
those using the all-no-void visualization is smaller in PASCAL
than in MSRC. This may be because PASCAL has bounding
boxes, where the surrounding objects leak into the appearance
of the objects, making contextual information less critical
overall4. To verify this, we conducted an experiment on about
400 low-resolution PASCAL images containing about 800
objects using appearance information alone, comparing per-
formances using segmentations and bounding boxes. We find
that using bounding boxes, human accuracy was 51%, while

3. Inspired by this finding, we recently proposed a novel contextual cue
that exploits these void regions and boosts performance of a state-of-the-art
object detector [58].

4. Previous works have also shown a minimal boost in performance using
the PASCAL dataset [55].

Fig. 20. All contextual information via the ‘all-exploded’
visualization (left: MSRC, right: PASCAL).
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Fig. 21. Recognition accuracies of subjects on the MSRC
and PASCAL datasets for different sources of context.

using segmentations, the accuracy was 39%. This indicates
that the bounding boxes themselves do in fact incorporate
useful contextual information, which is more valuable than
the explicit shape information revealed via the segmentations.

The role of the different sources of context for each of the
object categories in the MSRC and PASCAL dataset can be
seen in Fig. 22. For the MSRC dataset, we see some similar
trends to the machine results on the roles of context (Fig. 11),
where categories such as Body and Boat greatly benefit from
contextual information. Unlike machines, humans were able
to additionally take advantage of contextual information for
categories such as Face and Water, which have complementary
categories Body and Boat that are difficult to recognize from
appearance information. For sake of completeness we also
perform human studies using high resolution appearance infor-
mation alone, and subjects’ accuracies were 97% on both the
MSRC and PASCAL datasets. Apart from negligence, some
systematic errors made by human subjects in the PASCAL
images include scenarios where the object is effectively low
res (often seen with Bottle on a dining table which are
hard to recognize in isolation), or the bounding box contains
two object categories (such as Person on a Bicycle) making
it unclear (in spite of instructions) which object should be
labeled. In MSRC, apart from low effective resolution of
objects, aspects such as nearly white sky, or uncommon view-
points of objects (example in Fig. 15 a puppy-dog and sheep
can be confused) lead to errors.

6 DISCUSSION

In this section we draw attention to some interesting points of
discussion.

Impoverished Appearance Information: As stated in the
introduction, low-resolution images are only one scenario
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Fig. 23. Human studies on the ‘difficult’ PASCAL object
instances using appearance information alone (left), con-
textual information alone (blind recognition, middle) and
the entire image (right). Similar to object recognition in
low-resolution images, appearance information alone is
insufficient, and contextual information is necessary for
reliable recognition.

where appearance information is impoverished. Other scenar-
ios could include small objects in scenes, occluded objects,
etc. Interestingly, the objects marked as ‘difficult’ in the
PASCAL annotations are meant to represent precisely these
scenarios. As per the annotation protocol, “an object marked
as ‘difficult’ is considered difficult to recognize, for example
an object which is clearly visible but unidentifiable without
substantial use of context”. These objects are generally ignored
in the challenge, but we believe they provide a lucrative venue
for exploring contextual information in real-world, natural-
occurring images. We perform human studies on 548 PASCAL
images containing a total of 1, 192 such ‘difficult’ object
instances, using appearance information alone (Fig. 23 top-
left), contextual information alone (blind recognition, Fig. 23
top-middle) and the entire image (Fig. 23 top-right). The
accuracies obtained are also shown in Fig. 23 (bottom). Similar
to recognition in low resolution images, contextual information
is necessary in this scenario.

Accuracies on a Dataset by Chance

To analyze the amount of contextual information present
in a dataset, an interesting metric is to look at what recog-
nition accuracy can be achieved by chance as the different
forms of context are incorporated. For instance, if we had no
information, in a 21 class problem, chance would be 1/21
i.e. about 5%. However, if we analyze the location statistics
of the different categories, and classify a given segment by
assigning it to the most likely category given its location,
our chance accuracy is increased. We still refer to this as
chance because no appearance information or other intelligent
machinery has been used, we are simply making our best guess
blindly. Similarly other statistics such as scale, and location
and scale combined can be extracted from training data to
evaluate what recognition rates can be achieved. This provides
some insight into the significance of the performance boosts
achieved by state-of-the-art algorithms.

For the MSRC dataset, we find that we would get 5% recog-
nition rates by chance when classifying each segment/object
in the MSRC dataset using uniform prior, 14% using the
occurrence-based prior, 30% using the location-based prior
and 18% using the scale-based prior. Location and scale based
priors combined achieve about 32% accuracy, much higher
than the 5% we may be inclined to consider for a 21 class
problem. We note that this is the recognition accuracy without
looking at a single pixel in the object. Similar analysis of the
PASCAL dataset resulted in accuracies of 5% with uniform
prior, 48% using occurrence, location and scale information
individually and 49% using location and scale both. The high
accuracy using occurrence prior alone is, as demonstrated
earlier, due to the dominance of the Person category in the
statistics of the PASCAL dataset. These results indicate that
this holds true across scales and spatial locations, making the
PASCAL dataset less interesting for contextual modeling.

Improving Features or Context Models? We explore the
question “Do we need to improve our data terms further or
our context models to achieve close to human accuracies?”
Looking at the MSRC high resolution results in Fig. 4 we find
that machines are lagging significantly behind on using appear-
ance information alone. For low resolution images, in which
the appearance only tests between humans and machines are
similar, the use of context helps humans significantly more.
Thus, it appears that improvements in both appearance and
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contextual models need to be made to match the performance
of humans. Since results using only appearance information
are similar for humans and machines on low resolution images,
this task provides a good scenario for evaluating context
models.

Context as Representing the Structure in the World: As
we see in our results, the gain from context is certainly
a characteristic of the dataset. The more complex a scene,
the greater the likelihood of it benefitting from context. As
the complexity and number of objects increases, obtaining
training datasets with sufficient information will be more
difficult. Means of learning context from outside sources such
as Google Sets as proposed by Rabinovich et al. [5] or large
collections of image data such as LabelMe [56] may need to
be explored. Leveraging extensive and diverse sources of data
is necessary to learn the generic structure of our world, as
opposed to potential peculiarities of a dataset.

7 CONCLUSION

In conclusion this paper makes three main contributions. First,
we propose a model for context that includes relative location
and scale information, as well as co-occurrence informa-
tion, which produces state-of-the-art performance on both the
MSRC and Corel datasets even with low resolution images.
Second, we explore the tradeoffs of appearance and contextual
information using both low and high resolution images in
human and machine studies. Low resolution images provide
an appropriate venue for exploring the role of context, since
recognition based on appearance information alone is limited.
Finally, we explore the impact of the different sources of
context on machine and human object recognition performance
in low resolution images, from the MSRC (segment-based) and
PASCAL (bounding-box-based) datasets. For human subjects,
we find that relative-scale does not prove to be a strong
source of contextual information on these datasets, while co-
occurrence and relative location are useful.
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