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Abstract

The performance of current state-of-the-art computer vi-
sion algorithms at image classification falls significantly
short as compared to human abilities. To reduce this gap,
it is important for the community to know what problems to
solve, and not just how to solve them. Towards this goal,
via the use of jumbled images, we strip apart two widely in-
vestigated aspects: local and global information in images,
and identify the performance bottleneck.

Interestingly, humans have been shown to reliably recog-
nize jumbled images. The goal of our paper is to determine
a functional model that mimics how humans recognize jum-
bled images i.e. exploit local information alone, and fur-
ther evaluate if existing implementations of this computa-
tional model suffice to match human performance. Surpris-
ingly, in our series of human studies and machine experi-
ments, we find that a simple bag-of-words based majority-
vote-like strategy is an accurate functional model of how
humans recognize jumbled images. Moreover, a straight-
forward machine implementation of this model achieves ac-
curacies similar to human subjects at classifying jumbled
images. This indicates that perhaps existing machine vision
techniques already leverage local information from images
effectively, and future research efforts should be focused on
more advanced modeling of global information.

1. Introduction

Recognizing scenes and objects depicted in an image are
central tasks towards the goal of automatic image under-
standing. Consequently, a vast amount of effort in computer
vision and machine learning has been focused on improving
machine accuracy at these tasks. Unfortunately, machine
visual recognition performance still falls significantly short
when compared to human abilities.

The goal of boosting machine performance at these
tasks, and thus reducing this gap between human and ma-
chine abilities, can be pursued in one of two ways. The

Figure 1: Jumbled images of a car, face, gym and mountain scene. We
study human and machine classification of jumbled images, which contain
only local information and no global information, to determine which of
these two factors needs most improvement in machine vision.

first is to focus on how to solve the problems, set the hu-
man aside, and optimize different stages of the machine vi-
sual recognition pipeline, be it the models, data, features or
learning algorithms. This is a valid line of research, after
all machines are wired differently than the finely evolved
human brains; both with their own sets of strengths, weak-
nesses and arguably, even goals. This approach has led to
significant progress in the field, and in fact most existing
works in literature fall in this category.

The other approach, which this paper follows, is to focus
on what problems to solve, by evaluating if machines have
‘mastered’ certain aspects of the problem, but are weaker at
others. We focus our attention on humans as a working sys-
tem of what we hope to achieve (i.e. mastery at vision), and
explicitly incorporate them to constraint the search space of
potential research pursuits for optimizing machines. Specif-
ically, by isolating different factors relevant to the recogni-
tion problem, we can ‘reverse engineer’ humans and study
how they leverage each of these factors individually. More-



over, by comparing human and machine abilities along each
of these factors, we could gain insights into which aspects
of the machine recognition pipeline are falling short and
need further advancements, and which aspects are effective
enough already.

In this paper, we focus on image classification, where
an image is to be classified into a scene or object cate-
gory depicted in the image. We wish to disentangle two
widely investigated sources of information in an image: lo-
cal and global information, and analyze which one of these
aspects is in most need for advancements. While different
researchers may have an opinion about this, with or with-
out consensus across the board, we believe it is important to
give this aspect explicit and formal treatment, towards the
goal of scientifically determining which factors are crucial
for future progress in visual recognition.

Jumbled images, as shown in Figure 1, provide an ap-
propriate regime for our study, where local information is
preserved, but the global layout of the scene is lost. It
has been shown that humans can reliably classify jumbled
images [1, 2]. Our goal is to identify a functional model
that describes how humans leverage local information that
allows for such reliable classification of jumbled images.
When a subject identifies the scene category depicted in
a jumbled image, what functional model1 best mimics the
process (s)he employs? Is it a representation that encodes
the object category of each block, and describes the distri-
bution of object categories in the image? A computational
model mimicking this has been proposed by Vogel et al. [1].
Alternatively, are the objects bypassed, each block directly
indicates a scene category, and these cues are accumulated
via a majority-vote to deduce the scene category of the im-
age, similar to a bag-of-words model [3]? Or is it a com-
plex inference mechanism such as a Markov Random Field
(MRF) to perhaps re-assemble the image [4] in an attempt
to restore the missing global information? Further, if we
were to identify the functional model, are existing machine
implementations of the corresponding computational model
effective enough to replicate human performance at recog-
nizing jumbled images?

To this end, we conduct a series of human studies. Sub-
jects are asked to classify jumbled images from multiple
scene and object recognition datasets, as well as individual
blocks in isolation. To our surprise, we find that the simple
majority-vote accumulation strategy over the human classi-
fication of the individual blocks, predicts the human classi-
fication of the entire jumbled image well. We also perform
machine experiments with a naive implementation of such a
local-block-based majority-vote scheme, and find its predic-

1We note that our goal is to identify a functional model that mimics
human responses, and not determine a biologically plausible model to ex-
plain human behavior (although the former may lead to insights for the
latter, and vice versa).

tions to be well correlated with the human responses. This
indicates that not only does a simple functional model ex-
plain how humans leverage local information, but existing
tools in literature can match human performance at classi-
fying images when global information is absent. Hence,
the large gap in machine and human abilities at classifying
intact images, must stem from an inability of existing com-
putational models to effectively capture global information.
We hope this insight better guides future research endeavors
in the community.

2. Related Work
Many previous works have studied humans in the hope of

gaining insight into the recognition problem. David Marr’s
book [5] is one of the earliest attempts at studying hu-
mans to design computational models with similar behavior.
Closest in philosophy to our approach of isolating different
factors of the recognition problem is the work of Parikh et
al. [2, 6], who evaluate the roles of features, algorithms and
data for image classification [2], and the relative importance
of part detection, spatial modeling and contextual reasoning
for object detection [6].

Global: It is well accepted that the global layout of a
scene plays a key role in how humans recognize scenes [7],
especially when subjects see the images for a short dura-
tion of time. Fei-Fei et al. [8] show that humans can rec-
ognize scenes rapidly even while being distracted, and can
provide detailed information about the scene after viewing
it briefly [9]. Just as jumbled images contain only local
(no global) information, low resolution images contain only
global (no local) information. Bachamann et al. [10] show
that humans can reliably recognize faces in 16×16 images,
and Oliva et al. [11] present similar results for scene recog-
nition. Torralba et al. [12] show that humans can reliably
detect objects in 32×32 images. Computational models that
effectively capture the global layout of the scene such as the
gist [16] and spatial pyramid [17] representations have also
been proposed.

Local: Interestingly, it has been demonstrated that hu-
mans also leverage local information effectively, allowing
them to recognize scene categories even from jumbled im-
ages [1, 2] as shown in Figure 1. A large variety of com-
putational models have been proposed, such as the popu-
lar bag-of-words model [3] and many variations exploring
numerous local features, appearance models, interest-point-
detectors, spatial sampling strategies, dictionary formation
approaches, classifiers, learning algorithms, etc. – a com-
plete survey of which is beyond the scope of this paper.

While significant research effort has been invested in im-
proving local as well as global models for images, it is not
clear which one of these aspects is where existing machine
techniques lag as compared to humans, and have the most



potential for improvement as compared to humans. This
forms the focus of our work.

Global vs. Local: The tradeoff between local and global
information has been explored for face [13] and object
recognition [14]. Parikh et al. [15] study the role of appear-
ance (local) and contextual (global) information for image
labeling in low and high resolution images. Closest to our
work is the work of Vogel et al. [1], which explores the role
of global vs. local information for scene recognition, by
conducting human studies with blurred and jumbled images
respectively. They find that both local and global sources
of information are exploited. To the best of our knowledge,
the question of how humans utilize the local information
has not been studied thus far, which is a goal of this pa-
per. Vogel et al. [1] propose a computation model that first
maps each block to an object category, and the distribution
of these object categories is used to identify the scene cate-
gory. One of the goals of this work is to understand if such
a complex model is required to predict human responses, or
if a simpler model suffices.

Jumbled Images: Jumbled images (Figure 1) have been
used before to better understand different aspects of the
human recognition system. Biederman studied the impact
of jumbling images on human object recognition accuracy
given short exposure times [18]. The effect of jumbling on
subject response times at the task of object detection is ex-
plored in [19]. The impact of varying levels of confusion
among the labels on human image classification accuracy,
and of varying exposure times on object detection accuracy
is studied in intact and jumbled images to understand if hu-
mans use holistic information or a sampling of objects [20].
Both are conjectured to be useful. Loftus et al. [21] study
different types of tasks, where either holistic information or
specific features are crucial. They find that at very short
exposure times performance based on holistic information
was superior, whereas the reverse was true when sufficient
study time was available. Giraudet et al. [22] use jumbled
images to alter the contextual information in the image, and
blurring to alter the image quality, to understand the coop-
eration between the top-down and bottom-up information.
Top-down contextual information is important when the
bottom-up appearance information is degraded. However,
this importance is reduced as the subjects become more fa-
miliar with the images. Tjan et al. [23] use tile-jumbled and
pixel-jumbled images to understand the role of color and
local information in priming rapid scene recognition (early
scene perception). Yokosawa et al. [24] explore how human
change-detection performance is affected by various image
transformations such as jumbled images, images with miss-
ing blocks, etc. In this work we use jumbled images to de-
termine a functional model that mimics how human recog-
nize images using local information alone, and can predict
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Figure 2: Example images from datasets we experiment with.

human responses to jumbled images. Since our goal is not
to determine a biologically plausible model, aspects like re-
sponse time of subjects to jumbled images, etc. explored by
some of the above works are less relevant to this study.

3. Method
To reiterate, we are interested in determining if humans

can classify jumbled images because they resort to a com-
plex model incorporating mid-level representations or inter-
actions among the blocks, or if a simple bag-of-words based
majority-vote model suffices. The underlying intuition be-
hind how we determine this is as follows: if subjects can
recognize the individual blocks even in isolation from the
rest of the image reliably enough, such that a majority-vote
on these local decisions predicts the label that subjects as-
sign to the jumbled image globally, we can conclude that the
simple model is sufficient. Otherwise it is not, and some-
thing more complex must be at work.

We perform experiments with the following three
datasets: OSR: Outdoor Scene Recognition [16] containing
images from coast, forest, highway, inside-city, mountain,
open-country, street and tall-building categories; ISR: In-
door Scene Recognition [25] containing images from bath-
room, bedroom, dining room, gym, kitchen, living room,
theater and staircase categories; and CAL: CALtech object
recognition [26] containing images from airplane, car-rear,
face, ketch, motorbike and watch categories. We select 50
random images from each category to form our datasets.
Example images from these datasets can be seen in Figure 2.

3.1. Human Studies

All human studies were performed on Amazon’s Me-
chanical Turk, an online crowd-sourcing service. In all our
studies, each test instance was assigned to 10 subjects. Sub-



Figure 3: Amazon Mechanical Turk interface snapshot.
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Figure 4: Human recognition accuracy on the OSR dataset on jumbled
images with varying number of blocks.

jects were paid half a cent for labeling each test instance.
The image was displayed to the subjects along with a list
of radio buttons indicating the categories to select from, as
seen in Figure 3. There were no constraints on subjects’ re-
sponse times. The images were resized such that the largest
dimension was 256 pixels.

3.1.1 Jumbled Images

Jumbled images were created by dividing an image into
n×n non-overlapping blocks, and then randomly shuffling
them (see Figure 1). The accuracy of human subjects at
classifying jumbled images for varying values of n for the
OSR dataset can be seen in Figure 42. It can be seen that
beyond n = 12 there is a significant drop in accuracy, so
we choose n = 12 for further experiments. A similar anal-
ysis for ISR and CAL led to n = 6 and n = 12 respectively.
We note that the rate at which the curve in Figure 4 falls de-

2For this test, all images in the original OSR dataset containing over
2600 images were randomly split across the different values of n.
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Figure 5: Two different visualizations for retaining only 36 of the 144
blocks in jumbled images.
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Figure 6: Human recognition accuracy on jumbled images in the OSR
dataset based on different visualizations.

pends on the classification task at hand. With few and very
distinct categories (e.g. forrest vs. sunset scenes), human
recognition of jumbled images may be high even for very
large values of n, while for more fine-grained tasks (e.g.
classifying different makes and models of cars), the value
of n would need to be low. By adaptively picking the value
of n where human accuracy transitions from good to bad,
we are effectively normalizing for the inherent difficulty of
the recognition task, which depends on external factors such
as the choice and number of categories in a dataset.

Since the eventual study will consist of having 10 sub-
jects classify every block from every image in isolation, it is
important for the number of blocks to be classified to not be
very large. With n = 6 for ISR, each image contained only
36 blocks. But OSR and CAL have 144 blocks per image,
which was prohibitively large for our budget. We consider
dropping 75% of the blocks from the OSR and CAL images.
We do not expect this to affect the human classification ac-
curacy on jumbled images, because most local structures in
images are repetitive.

To verify this, we compare human accuracy when using
all 144 blocks in an image, to that of using a random sub-
set of 36 out of the 144 blocks. This can be achieved in
two ways. The blocks to be removed can be replaced with
black pixels (Figure 5 (left)), or the blocks can be dropped,
and the retained blocks can be re-arranged into a 6× 6 grid
(Figure 5 (right)). A comparison of human accuracies on
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Figure 7: Human recognition accuracy on intact and jumbled images
(with missing blocks when applicable).

OSR in these different scenarios can be seen in Figure 6.
First, we see that when we remove 75% of the blocks, the
recognition accuracy is lower, but not with statistical sig-
nificance. Secondly, we see that not displaying the holes in
the image is more effective. Interestingly, the accuracies are
higher when using only 25% of the blocks (without visible
holes) than when using all the blocks. We suspect that this
may be because even with fewer blocks, the images were
displayed on the screen at the same size, effectively making
each block larger. The robustness of the human recognition
system to a large proportion of missing blocks in jumbled
images indicates that the processing does not involve re-
assembling the image back together, or any such complex
inference process that requires consistency in the appear-
ance of the blocks.

To summarize, for further tests, for OSR and CAL we
use only 36 of the 144 blocks in each image without dis-
playing the holes corresponding to the missing blocks. We
note that this is not the same as using n = 6 when jumbling
the images. For ISR (where n = 6) all 36 blocks are re-
tained. Subjects’ recognition accuracies on these jumbled
images with missing blocks (where applicable) on the three
datasets are shown in Figure 7. For comparison, we also
show the accuracy of human subjects at recognizing intact
(unjumbled) images (where of course, no blocks are miss-
ing). We can see that although the accuracies on the jum-
bled images are significantly higher than chance, they are
lower than the accuracies on intact images with statistical
significance. This difference in accuracies can be attributed
to the necessity of global information for image classifica-
tion.

3.1.2 Filtering the Datasets

In order to work with only those images that allow for
meaningful conclusions to be drawn, we filter our dataset
and conduct further experiments only with a subset of the
images. In a later experiment, we also show results using
the entire unfiltered dataset.

Removing semantic inconsistencies: To remove the ef-
fects of unrelated factors that influence the underlying clas-
sification task, we further experiment with only those im-

Inside‐city Street
Figure 8: Semantic ambiguities in the OSR dataset.

ages that are classified correctly and consistently across
subjects when they are intact (not jumbled). This is to en-
sure that none of the images included in the remaining stud-
ies are confusing because of semantic or linguistic proper-
ties of the labels. For example, “inside city” and “street”
scenes can be confusing for certain images in the OSR
dataset, as seen in Figure 8. As our first filtering step, all
intact images that were incorrectly classified by even one
out of the 10 subjects were discarded.

Removing human inconsistencies: In order to under-
stand which functional model predicts human categoriza-
tion of jumbled images well, it is important to work only
with those images that are consistently classified across sub-
jects, so that “the human response” is well defined. As
the second filtering step, only those jumbled images that
are consistently classified across subjects are considered for
further tests. A jumbled image is assigned to the class
picked by a majority of the subjects. It is considered to
be classified consistently if twice the number of subjects
picked the most frequent class, as compared to the number
of subjects that pick the second most frequent class. This
ensures that the image is classified consistently, but not nec-
essarily correctly (since the class with the most votes is not
guaranteed to be the correct class). For each dataset, we re-
tained at most 7 consistently and correctly classified and at
most 5 consistently but incorrectly classified images from
each category. Using this procedure, we retained 43 images
from OSR (35 classified correctly, and 8 incorrectly), 70
images from ISR (55 correctly and 15 incorrectly), and 47
images from CAL (42 correctly and 5 incorrectly) for fur-
ther investigation. Overall, of the retained jumbled images,
18% were incorrectly classified.

3.1.3 Individual Blocks

The final test is to have subjects classify each block from the
above selected images in isolation. Each block is displayed
individually, and subjects are asked to assign it to one of the
categories. OSR contains 43 images with 36 blocks per im-
age, which were classified by 10 subjects each, resulting in
a total of ∼16k responses. Similarly, we obtained ∼25k re-
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Figure 9: Human and machine accuracy at assigning each individual
block in isolation to a scene/object category.

sponses for ISR and ∼17k responses for CAL. Subjects’ ac-
curacy at assigning the individual blocks to the correspond-
ing classes is shown in Figure 9. It can be seen that while
the classification of the individual blocks is higher than ran-
dom indicating that the responses have some signal and not
just noise, it is significantly lower than the classification of
intact or jumbled images. We note that the accuracy for
CAL on the individual blocks is lower than OSR and ISR
(even though accuracies on intact and jumbled images for
CAL are higher in Figure 7). This is because the clear back-
ground in many CAL images leads to empty blocks which
subjects can not classify reliably. This test also indicates
that the number of blocks n that we choose to divide the
images into (as described in Section 3.1.1) does not result
in large enough blocks that would allow for reliable scene
recognition using the individual blocks alone. This demon-
strates that the information available is truly local in nature.

We accumulate these noisy local classifications of the in-
dividual blocks across subjects. Each of the 36 blocks in
an image is associated with a weighted vote for each class,
where the weight corresponds to the proportion of the 10
subjects that selected that class. We determine the class that
receives the largest weight of votes across the 36 blocks in
the image. This class label can be compared to the label as-
signed by the subjects when viewing the entire jumbled im-
ages. If a large percentage of the majority-vote predictions
match the global responses, we conclude that the majority-
vote is a good functional model to describe how humans
leverage local information to classify jumbled images. Be-
fore we present results in Section 4, we describe our ma-
chine experiments.

3.2. Machine Implementation

In addition to the human studies, we perform machine
experiments implementing a bag-of-words-based majority-
vote strategy to further test the model’s ability to predict
human classification of jumbled images. Computational
models that aggregate local block-based decisions has been
explored by Szummer et al. [27] for indoor-outdoor image
classification. Our implementation is simpler than most of
their models.
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Figure 10: Percentage of images on which the majority-vote models’
predictions match subjects’ classification of entire jumbled images.

We describe each block in a jumbled image with a spa-
tial distribution of color and texture features. For color, we
use the RGB (3 features) and HSV (3 features) channels.
For each of these channels, the average value within each
cell of a 2 × 2 grid on the block is recorded. For texture,
the block is filtered with a bank of 12 filters at 6 orienta-
tions and 2 scales [28]. For each filter channel, the average
and maximum response within the cells of the 2× 2 grid is
recorded. Each block is thus represented with a 120 dimen-
sional descriptor.

These descriptors are collected from blocks from a sep-
arate set of training images (55k blocks for OSR, 14k for
ISR and 43k for CAL), and clustered into a dictionary of
500 codewords for each dataset using k-means clustering.
During training, for each codeword, we estimate the poste-
rior distribution of a scene/object category given the code-
word. During testing, each block in the (jumbled) test im-
age is assigned to a codeword, and the posterior distribution
corresponding to the codeword is used as votes for the dif-
ferent class categories. These weighted votes are accumu-
lated across all the blocks (36) in the image (similar to the
weighted-majority-vote accumulation on human responses
to individual blocks), and the class with the largest weight
of votes is used as the predicted class for the image. Again,
these predictions can be compared to the labels assigned by
human subjects to the entire jumbled images, to assess how
closely a machine implementation of a majority-vote model
describes how humans classify jumbled images. For refer-
ence, the accuracy of classifying each individual block in
a jumbled image by assigning it to the category with the
highest posterior distribution given the codeword the block
is closest to is shown in Figure 9. We see that the machine
accuracy is very similar to the human accuracy, providing a
strong indication that existing machine approaches capture
local information as effectively as humans.

4. Results

We compare how closely the majority-vote model mim-
ics human classification of jumbled images. Figure 10
shows the percentage of human responses to entire jum-



se
s

80
100

Pr
op

or
tio

n 
of
 

m
at
ch
ed

 re
sp
on

s

0
20
40
60
80

Human

Machine

m All Cons. correct Cons. incorrect

Figure 11: Percentage of matches between the majority-vote model ap-
plied to the human/machine classification of individual blocks, and the hu-
man responses to the consistently correctly and consistently incorrectly
classified entire jumbled images (across all three datasets).

bled images that match the predictions of the majority-vote
model, applied to the human responses to local individual
blocks, as well as our bag-of-words based machine imple-
mentation. We can see that in both cases, the majority-
vote model correctly predicts a large percentage of the hu-
man responses to the entire jumbled images. To place this
matching rate in perspective, we also report the inter-human
matching rate in Figure 10. As described in Section 3.1,
each jumbled image was classified by 10 subjects. Although
we selected those images that had high consistency in the
responses obtained (as described in Section 3.1.2), the re-
sponses were not 100% consistent. We compute the inter-
human matching rate by averaging across images the per-
centage of responses that matched the response most sub-
jects gave the image. As seen in Figure 10, the matching
rate of the majority-vote model on the human responses
to individual blocks, as well as the machine implementa-
tion, are statistically the same as the inter-human agree-
ment. This indicates that majority-vote is indeed an accu-
rate functional model that mimics how humans leverage lo-
cal information alone to classify jumbled images. For sake
of comparison, in Figure 10 we also show the matching rate
of a baseline model where an image is assigned to the class
picked by the single block most consistently classified by
humans (i.e. most confident block) in the image. We see
that this model, although significantly better than random,
is too simplistic to predict human responses to jumbled im-
ages reliably.

As described in Section 3.1.2, we are only working with
jumbled images that were consistently (correctly or incor-
rectly) classified by the subject. We now look at the images
that were correctly classified (132 images across datasets)
and incorrectly classified (28 images across datasets) sep-
arately. The results are shown in Figure 11. We see that
the majority-vote model, on both humans and machines re-
sponses to individual blocks, can accurately predict the cor-
rect human responses to jumbled images, as well as their
mistakes, further stressing the aptness of the majority vote
model as a functional model for how humans utilize local
information to classify jumbled images.

Lastly, to ensure that our findings are not biased by only
considering filtered datasets (Section 3.1.2), we apply our
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Figure 12: Accuracy of machine implementation of a majority-vote
strategy for recognizing jumbled images (50 images per category in each
dataset) as compared to accuracy of human subjects.

naive machine implementation of the bag-of-words based
majority-vote scheme to all 400 (300 for ISR) jumbled im-
ages in our pre-filtered datasets. The accuracies obtained
are shown in Figure 12. For sake of reference, we also show
the corresponding human accuracies on the jumbled im-
ages. We see that the accuracies are very comparable, with
no statistical difference for OSR and CAL. This demon-
strates that existing implementations of a simple computa-
tional model suffice to match human accuracies at classi-
fying images using local information alone, and future re-
search endeavors should focus on modeling global informa-
tion in images. The ISR dataset has a wider variety in local
visual appearances, and perhaps a larger dictionary size in
the machine implementation could further improve the per-
formance.

5. Discussion
Our analysis so far was focused on a particular choice of

block sizes. A study for the future would be to understand if
as the block size changes (particularly, decreases), do sub-
jects employ more complex models than majority-vote to
make up for the degrading local information, or is the dras-
tic drop in human accuracy of recognizing jumbled images
with smaller blocks (Figure 4) precisely due to the majority-
vote model’s inability to deduce the correct category from
local responses based on these small blocks. What about in-
creasing number of scene and object categories? This paper
focuses only on upright color images, and whether the find-
ings carry over to gray scale images or randomly oriented
images/blocks is a subject of future research.

We note that to keep the experimental set up consistent
between the machine experiments and human studies, we
did not optimize the block size in our machine implemen-
tation. The choice of features or codeword dictionary size
were not optimized either. Moreover, our implementation
is even simpler than the typical bag-of-words implementa-
tion, where a classifier is often trained on the codeword-
distribution in the image (in our case, ≈500D). In our im-
plementation, each codeword (1D) votes for the scene cat-
egory, and the votes are accumulated via a straightforward
majority-vote instead of a discriminatively trained measure.

The simplicity of the functional model found to accu-



rately mimic how humans leverage local information in ab-
sence of global information, and the ability of a straightfor-
ward machine implementation to match human accuracies
at recognizing jumbled images is a strong indication that
the research community should focus on modeling global
information in images. This global information could be
the spatial layout of scenes (especially for indoor and other
complex scenes where gist is found to be less effective), or
spatial interactions among the local entities (be it patches,
or segments, or parts, or objects) or contextual reasoning.
To focus on modeling global information, in similar spirits
to this paper, perhaps it would be useful to study scenarios
where the local information is impoverished, but global in-
formation is intact, such as in low-resolution images, where
existing computational models are known to fail, while hu-
man abilities are surprisingly effective [12, 15]. Attempt-
ing to solve machine vision in such low-resolution images
would truly require us to explore global information in ways
not explored thus far, potentially leading to unprecedented
advancements.

Finally, we comment on the recent findings of Parikh et
al. [6, 15] in light of this work. Consistent with this pa-
per, Parikh et al. show that human contextual reasoning
(global information) for semantic image segmentation [15]
and object detection [6] is far superior to machines. How-
ever, seemingly contrary to the conclusions in this paper,
Parikh et al. [6] show that humans are significantly superior
to machines at recognizing parts from image patches (local
information). Indeed, it is conceivable that the information
in a local patch may be sufficient for humans to recognize
parts (local concepts) but not scenes (global concepts). Sys-
tematically evaluating the role of local and global informa-
tion for a spectrum of tasks to unify these findings is part of
future work.

6. Conclusion
Machine performance at the task of image classification

falls significantly short when compared to the correspond-
ing human abilities. Understanding which aspects con-
tribute to this gap the most could help the community to
focus our research efforts better. In this paper, we isolate
the local information in an image from it’s global informa-
tion via jumbled images. We study how humans leverage
local information and test if existing computational tools
are effective enough to match human recognition abilities
in the presence of local information alone. To our sur-
prise, through a series of human studies and machine exper-
iments, we find that a simple bag-of-words based majority-
vote model is an accurate functional model to mimic how
humans recognize jumbled images. Moreover, a simple
unoptimized machine implementation of this majority-vote
strategy achieves comparable recognition accuracy to hu-
mans at classifying jumbled images. We believe this to be

a strong indication that the community should focus future
research endeavors towards modeling global information in
images, perhaps by attempting machine visual recognition
in low-resolution images.
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