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Abstract

When we look at an image, some properties or attributes
of the image stand out more than others. When describing
an image, people are likely to describe these dominant at-
tributes first. Attribute dominance is a result of a complex
interplay between the various properties present or absent
in the image. Which attributes in an image are more domi-
nant than others reveals rich information about the content
of the image. In this paper we tap into this information
by modeling attribute dominance. We show that this helps
improve the performance of vision systems on a variety of
human-centric applications such as zero-shot learning, im-
age search and generating textual descriptions of images.

1. Introduction

When we look at an image, some properties of the image
pop out at us more than others. In Figure 1 (a), we are
likely to talk about the puppy as being white and furry. Even
though the animal in Figure 1 (b) is also white and furry, that
is not what we notice about it. Instead, we may notice its
sharp teeth. This is also true at the level of categories. We
are likely to talk about bears being furry but wolves being
fierce even though wolves are also furry. While all attributes
are – by definition – semantic visual concepts we care about,
different attributes dominate different images or categories.
The same attribute present in different images or categories
may dominate in some but not in others.

An attribute may be dominant in a visual concept due to
a variety of reasons such as strong presence, unusualness,
absence of other more dominant attributes, etc. For exam-
ple, Figure 1 (c) depicts a person with a very wide smile
with her teeth clearly visible. Figure 1 (d) is a photograph
of a person wearing very bright lipstick. Hence smiling and
wearing lipstick are dominant in these two images respec-
tively. It is relatively uncommon for people to have a beard
and wear glasses, making these attributes dominant in Fig-
ure 1 (f). When neither of these cases are true, attributes
that are inherently salient (e.g. race, gender, etc. for peo-
ple) is what one would use to describe an image or category
(Figure 1 (e)) and turn out to be dominant. Correlations
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Figure 1: Different attributes pop out at us in different im-
ages. Although (a) and (b) are both white and furry, these
attributes dominate (a) but not (b). Smiling and wearing
lipstick stand out in (b) and (c) because of their strong pres-
ence. Glasses and beards are relatively unusual and stand
out in (f). Some attributes like race and gender are inher-
ently more salient (e).

among attributes can also affect dominance. For instance,
bearded people are generally male, and so “not bearded” is
unlikely to be noticed or mentioned for a female. In general,
attribute dominance is different from the relative strength
of an attribute in an image. Relative attributes [24] com-
pare the strength of an attribute across images. Attribute
dominance compares the relative importance of different at-
tributes within an image or category. Attribute dominance
is an image- or category-specific phenomenon – a manifes-
tation of a complex interplay among all attributes present
(or absent) in the image or category.

Why should we care about attribute dominance? Be-
cause attribute dominance affects how humans perceive and
describe images. Humans are often users of a vision system
as in image search where the user may provide an attribute-
based query. Humans are often supervisors of a vision
system as in zero-shot learning where the human teaches
the machine novel visual concepts simply by describing
them in terms of its attributes. Attribute dominance affects
which attributes humans tend to name in these scenarios,
and in which order. Since these tendencies are image- and
category-specific, they reflect information about the visual
content – they provide identifying information about an im-
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age or category. Tapping into this information by modeling
attribute dominance is a step towards enhancing communi-
cation between humans and machines, and can lead to im-
proved performance of computer vision systems in human-
centric applications such as zero-shot learning and image
search. Machine generated textual descriptions of images
that reason about attribute dominance are also more likely
to be natural and easily understandable by humans.

In this paper, we model attribute dominance. We learn a
model that given a novel image, can predict how dominant
each attribute is likely to be in this image. We leverage this
model for improved human-machine communication in two
domains: faces and animals. We empirically demonstrate
improvements over state-of-the-art for zero-shot learning,
image search and generating textual descriptions of images.

2. Related Work
We now describe existing works that use attributes for

image understanding. We elaborate more on approaches
geared specifically towards the three applications that we
evaluate our approach on: zero-shot learning, image search
and automatically generating textual descriptions of images.
We also relate our work to existing works on modeling
saliency and importance in images, as well as reading be-
tween the lines of what a user explicitly states.
Attributes: Attributes have been used extensively, es-
pecially in the past few years, for a variety of applica-
tions [2, 4, 7, 8, 11, 16, 18, 20, 23–25, 31–33]. Attributes
have been used to learn and evaluate models of deeper scene
understanding [8, 20] that reason about properties of ob-
jects as opposed to just the object categories. Attributes
can provide more effective active learning by allowing the
supervisor to provide attribute-based feedback to a classi-
fier [25], or at test time with a human-in-the-loop answering
relevant questions about a test image [4]. Attributes have
also been explored to improve object categorization [8] or
face verification performance [19]. Attributes being both
machine detectable and human understandable provide a
mode of communication between the two. In our work,
by modeling the dominance of attributes in images, we en-
hance this channel of communication. We demonstrate the
resultant benefits on three human-centric computer vision
applications that we expand on next: zero-shot learning, im-
age search and generating textual descriptions of image.
Zero-shot learning: Attributes have been used for al-
leviating human annotation efforts via zero-shot learning
[8, 20, 24] where a supervisor can teach a machine a novel
concept simply by describing its properties and without
having to provide example images of the concept. For
instance, a supervisor can teach a machine about zebras
by describing them as being striped and having four legs.
Works have looked at allowing supervisors to provide more
fine-grained descriptions such as “zebras have shorter necks

than giraffes” to improve zero-shot learning [24]. Our work
takes an orthogonal perspective: rather than using a more
detailed (and hence likely more cumbersome) mode of su-
pervision, we propose to model attribute dominance to ex-
tract more information from existing modes of supervision.
Image search: Attributes have been exploited for image
search by using them as keywords [18, 28] or as intermedi-
ate mid-level semantic representations [5, 21, 26, 29, 34, 36]
to reduce the well known semantic gap. Statements about
relative attributes [24] can be used to refine search re-
sults [16]. Modeling attribute dominance allows us to inject
the user’s subjectivity into the search results without explic-
itly eliciting feedback or more detailed queries.
Textual descriptions: Attributes have been used for auto-
matically generating textual description of images [17, 24]
that can also point out anomalies in objects [8]. Efforts
are also being made to predict entire sentences from im-
age features [7, 17, 22, 35]. Some methods generate novel
sentences for images by leveraging existing object detec-
tors [10], attributes predictors [2, 8, 24], language statistics
[35] or spatial relationships [17]. Sentences have also been
assigned to images by selecting a complete written descrip-
tion from a large set [9, 22]. Our work is orthogonal to these
directions. Efforts at generating natural language sentences
can benefit from our work that determines which attributes
ought to be mentioned in the first place, and in what order.
Saliency: Dominance is clearly related to saliency. A lot
of works [6, 14, 15] have looked at predicting which regions
of an image attract human attention, i.e., humans fixate on.
We look at the distinct task of modeling which high-level
semantic concepts (i.e. attributes) attract human attention.
Importance: A related notion of importance has also
been examined in the community. The order in which peo-
ple are likely to name objects in an image was studied
in [30]. We study this for attributes. Predicting which
objects, attributes, and scenes are likely to be described
in an image has recently been studied [1]. We focus on
the constrained problem of predicting which attributes are
dominant or important. Unlike [1], in addition to predict-
ing which attributes are likely to be named, we also model
the order in which the attributes are likely to be named.
Note that attribute dominance is not meant to capture user-
specific preferences (e.g. when searching for a striped dark
blue tie, a particular user may be willing to compromise
on the stripes but not on the dark blue color). Similar to
saliency and importance, while there may be some user-
specific aspects to attribute dominance, we are interested
in modeling the user-independent signals.
Reading between the lines: We propose exploiting the
order in which humans name attributes when describing an
image. This can be thought of as reading between the lines
of what the user is saying, and not simply taking the descrip-
tion – which attributes are stated to be present or absent –



at face value. This is related to an approach that uses the
order in which a user tags objects in an image to determine
the likely scales and locations of those objects in the im-
age leading to improved object detection [13] and image re-
trieval [12]. Our problem domain and approach are distinct,
and we look at additional human-centric applications such
as zero-shot learning. Combining object and attribute dom-
inance is an obvious direction for future work. The implicit
information conveyed in people’s choice to use relative vs.
binary attributes to describe an image is explored in [27].

3. Approach
We first describe how we annotate attribute dominance

in images (Section 3.1). We then present our model for pre-
dicting attribute dominance in a novel image (Section 3.2).
Finally, we describe how we use our attribute dominance
predictors for three applications: zero-shot learning (Sec-
tion 3.3), image search (Section 3.4) and textual description
(Section 3.5).

3.1. Annotating Attribute Dominance

We annotate attribute dominance in images to train our
attribute dominance predictor, and use it as ground truth
at test time to evaluate our approach. We conduct user
studies on Amazon Mechanical Turk to collect the anno-
tations. We collect dominance annotations at the category-
level, although our approach trivially generalizes to image-
level dominance annotations as well.

We are given a vocabulary of M binary attributes
{am},m ∈ {1, . . . ,M}, images from N categories
{Cn}, n ∈ {1, . . . , N} and the ground truth presence or ab-
sence of each attribute in each category: gnm = 1 if attribute
am is present in category Cn, otherwise gnm = 0. 1

We show subjects example images from a category
Cn, along with a pair of attributes am and am′ , m′ ∈
{1, . . . ,M}. Without loss of generality, let us assume that
both attributes are present in the image i.e. gnm = 1 and
gnm′ = 1. If the user had to describe the category using one
of these two attributes “am is present” or “am′ is present”,
we want to know which one (s)he would use i.e. which
one is more dominant. For quality control, instead of show-
ing subjects only the two options that correspond to gnm, we
show them all four options including in this case “am is ab-
sent” and “am′ is absent” (see Figure 2). If a worker picks a
statement that is inconsistent with gnm on several occasions,
we remove his responses from our data.2 Each category is

1Note: the presence or absence of an attribute in a category is distinct
from whether that attribute is dominant in the category or not. Also, the
ground truth presence / absence of an attribute in the images is not strictly
required to train our approach. We use it for quality control on MTurk.

2Dominance can not be inconsistent with ground truth. That is “does
not have beard” can not be dominant for a bearded person, or “has beard”
can not be dominant for a person without a beard.

Figure 2: Interface used to collect annotations for attribute
dominance.

shown with all
(
M
2

)
pairs of attributes. Each question is

shown to 6 different subjects.
Note that absence of an attribute e.g. “does not have

eyebrows” can also be dominant. Since the presence of
an attribute may be dominant in some images, but its ab-
sence may be dominant in others, we model them sepa-
rately. This effectively leads to a vocabulary of 2M at-
tributes {a1m, a0m},m ∈ {1, . . . ,M}, where a1m corre-
sponds to am = 1 i.e. attributes am is present, and a0m cor-
responds to am = 0. For ease of notation, from here on, we
replace a1m and a0m with just am, but let m ∈ {1, . . . , 2M}.
We refer to this as the expanded vocabulary.

The dominance dnm of attribute am in category Cn is de-
fined to be the number of subjects that selected am when it
appeared as one of the options. Each attribute appears as an
option M times. So we have

dnm =

M∑
o=1

S∑
s=1

[↑ mo
s] (1)

where S is the number of subjects (6 in our case), [.] is
1 if the argument is true, and ↑ mo

s indicates that subject s
selected attribute am the oth time it appeared as an option.

We now have the ground truth dominance value for all
2M attributes in all N categories. We assume that when
asked to describe an image using K attributes, users will
use the K most dominant attributes. This is consistent with
the instructions subjects were given when collecting the an-
notations (see Figure 2). The data we collected is publicly
available on the authors’ webpage. We now describe our
approach to predicting dominance of an attribute in a novel
image.



3.2. Modeling Attribute Dominance

Given a novel image xt, we predict the dominance d̂mt
of attribute m in that image using

d̂mt = wT
mφ(xt) (2)

We represent image xt via an image descriptor. We use
the output scores of binary attribute classifiers to describe
the image. This exposes the complex interplay among
attributes discussed in the introduction that leads to the
dominance of certain attributes in an image and not oth-
ers. The relevant aspects of the interplay are learnt by our
model. φ(xt) can be just xt or an implicit high- (potentially
infinite-) dimensional feature map implied by a kernel.

For training, we project the category-level attribute dom-
inance annotations to each training image. If we have P
training images {xp}, p ∈ {1, . . . , P}, along with their
class label indices {yp}, yp ∈ {1, . . . , N}, the dominance
of attributem in image xp is dmp = dmyp

. This gives us image
and attribute dominance pairs {(xp, d

m
p )} for each attribute

am. Using these pairs as supervision, we learn wm using
a regressor that maps xp to dmp . We experimented with a
linear and RBF kernel. Linear regression performed better
and was used in all our experiments.

The learnt parameters wm allow us to predict the domi-
nance value of all attributes in a new image xt (Equation 2).
We sort all 2M attributes in descending order of their dom-
inance values d̂mt . Let the rank of attribute m for image xt

be rm(xt). Then the probability pdmk (xt) that attribute m
is the kth most dominant is image xt is computed as

pdmk (xt) =
smk (xt)

2M∑
k=1

smk (xt)

(3)

smk (xt) =
1

log (|rm(xt)− k|+ 1) + 1
(4)

smk (xt) is a score that drops as the estimated rank
rm(xt) of the attribute in terms of its dominance in the im-
age is further away from k. Equation 3 simply normalizes
these scores across k to make it a valid distribution i.e. each
attribute is one of the 2M th most dominant in an image,
since there are only 2M attributes in the vocabulary. From
here on we drop the subscript t for a novel test image.

Note that although the dominance of each attribute
is predicted independently, the model is trained on an
attribute-based representation of the image. This allows the
model to capture correlations among the attributes. More
sophisticated models and features as explored in [12] can
also be incorporated. As our experiments demonstrate, even
our straight forward treatment of attribute dominance re-
sults in significant improvements in performance in a va-
riety of human centric applications. We describe our ap-
proach to these applications next.

3.3. Zero-shot Learning

In zero-shot learning [20], the supervisor describes novel
N ′ previously unseen categories in terms of their attribute
signatures {gmn′}, n′ ∈ {1, . . . , N ′}.3 With a pre-trained
set of M binary classifiers for each attribute and Lam-
pert et al.’s [20] Direct Attribute Prediction (DAP) model,
the probability that an image x belongs to each of the novel
categories Cn′ is

pan′(x) ∝
M∏

m=1

pam(x) (5)

where pam(x) is the probability that attribute am takes
the value gmn′ ∈ {0, 1} in image x as computed using the
binary classifier for attribute am. The image is assigned
to the category with the highest probability pan′(x). This
approach forms our baseline. It relies on an interface where
a supervisor goes through every attribute in a pre-defined
arbitrary order and indicates its presence or absence in a
test category. We argue that this is not natural for humans.

People are likely to describe a zebra as a horse-like an-
imal with stripes, an elephant as a grey large animal with
a trunk and tusks, and a hippopotamus as a round animal
often found in or around water. It is much more natural
for humans to describe categories using only a subset of
attributes. These subsets are different for each category.
Moreover, even within the subsets people consistently name
some attributes before others (more on this in the results
section). Our approach allows for this natural interaction.
More importantly, it exploits the resultant patterns revealed
in human behavior when allowed to interact with the sys-
tem naturally, leading to improved classification of a novel
image.4 It assumes that since being striped is a dominant
attribute for zebras, a test image is more likely to be a zebra
if it is striped and being striped is dominant in that image.

Let’s say the supervisor describes the cate-
gory Cn′ using K attributes in a particular order
(gm1

n′ , . . . , g
mk

n′ , . . . , g
mK

n′ ),mk ∈ {1, . . . , 2M}. To
determine how likely an image is to belong to class Cn′ ,
our approach not only verifies how well its appearance
matches the specified attributes presence / absence, but also
verifies how well the predicted ordering of attributes ac-
cording to their dominance matches the order of attributes
used by the supervisor when describing the test category.
We compute the probability of an image x belonging to a
class Cn′ as:

pn′(x) = pan′(x)pdn′(x) (6)

where pan′(x) is the appearance term computed using
Equation 5 and the dominance term pdn′(x) is

3Recall, our vocabulary of 2M attributes is over-complete and redun-
dant since it includes both the presence and absence of attributes. The
supervisor only needs to specify half the attribute memberships.

4We use the interface in Figure 2 to hone in on these tendencies while
avoiding natural language processing issues involved with free-form text.



pdn′(x) ∝
K∏

k=1

pdmk

k (x) (7)

pdmk

k (x) is the probability that attribute amk
is the kth

most dominant attribute in image x and is computed us-
ing Equations 3 and 4. The test instance is assigned to the
category with the highest probability pn′(x). In our experi-
ments we report results for varying values of K.

3.4. Image Search

We consider the image search scenario where a user has
a target category in mind, and provides as query a list of
attributes that describe that category. It is unlikely that the
user will provide the values of all M attributes when de-
scribing the query. (S)he is likely to use the attributes dom-
inant in the target concept, naming the most dominant at-
tributes first.

In our approach, the probability that a target image
satisfies the given query depends on whether its appear-
ance matches the presence/absence of attributes specified,
and whether the predicted dominance of attributes in the
image satisfies the order used by the user in the query.
If the user used K attributes to describe his/her query
(gm1

n′ , . . . , g
mk

n′ , . . . , g
mK

n′ ) the probability that x is the tar-
get image is computed as:

p(x) ∝
K∏

k=1

pamk(x)pdmmk
(x) (8)

All images in the database are sorted in descending or-
der of p(x) to obtain the retrieval results for a given query.
The approach of Kumar et al. [18] corresponds to ignoring
the pdmk (x) term from the above equation, and using the
appearance term alone, which forms our baseline approach.
Again, we report results for varying values of K.

3.5. Textual Description

The task at hand is to describe a new image in terms
of the attributes present / absent in it. Again, if humans
are asked to describe an image, they will describe some at-
tributes before others, and may not describe some attributes
at all. If a machine is given similar abilities, we expect the
resultant description to characterize the image better than
an approach that lists attributes in an arbitrary order [8] and
chooses a random subset of K out of M attributes to de-
scribe the image [24].

Given an image x, we compute d̂m using Equation 2.
We sort all attributes in descending order of their predicted
dominance score for this image. If the task is to generate a
description with K attributes, we pick the top K attributes
from this ranked list to describe the image. We report re-
sults with varying values of K. Note that since dominance

is predicted for the expanded vocabulary, the resultant de-
scriptions can specify the presence as well as absence of
attributes.

4. Results

We first describe the datasets we experimented with. We
then provide an analysis of the dominance annotations we
collected to gain better insights into the phenomenon and
validate our assumptions. We then describe our experimen-
tal setup and report results on the three applications de-
scribed above.

4.1. Datasets

We experimented with two domains: faces and animals.
For faces, we used 10 images from each of the 200 cate-
gories in the Public Figures Face Database (PubFig) [19].
We worked with a vocabulary of 13 attributes (26 in the ex-
panded vocabulary including both presence and absence of
attributes). 5 These attributes were selected to ensure (1) a
variety in their presence / absence across the categories and
(2) ease of use for lay people on MTurk to comment on. We
combined some of the attributes of [19] into one e.g. mus-
tache, beard and goatee were combined to form facial hair.
We used the pre-trained attribute classifiers provided by Ku-
mar et al. [19] as our appearance based attribute classifiers.6

We used 180 categories for training, and 20 for testing. We
report average results of 10-fold cross validation.

For animals, we used the Animals with Attributes dataset
(AWA) [20] containing a total of 30475 images from 50 cat-
egories. We worked with a vocabulary of 27 attributes (54
in expanded vocabulary).7 These were picked to ensure that
lay people on MTurk can understand them. We used the pre-
trained attribute classifiers provided by Lampert et al. [20].
These attributes were trained on 21866 images from 40 cat-
egories. We used a held out set of 2429 validation images
from those 40 categories to train our dominance predictor.
We tested our approach on 6180 images from 10 previously
unseen categories (as did Lampert et al. [20]).

We collected attribute dominance annotation for each at-
tribute across all categories as described in Section 3.1. We
represent each image with the outputs of all 73 and 85 at-
tribute classifiers provided by Kumar et al. [19] and Lam-

5List of attributes: brown hair, high cheekbones, middle-aged, strong
nose-mouth lines, forehead not fully visible (hair, hat, etc.), smiling, fa-
cial hair, eye glasses (including sunglasses), white, teeth visible, bald or
receding hairline, arched eyebrows and blond hair.

6The probability of a combined attribute was computed by training a
classifier using the individual attributes as features.

7List of attributes: is black, is white, is gray, has patches, has
spots, has stripes, is furry, is hairless, has tough skin, is big, has bul-
bous/bulging/round body, is lean, has hooves, has pads, has paws, has long
legs, has long neck, has tail, has horns, has claws, swims, walks on two
legs, walks on four legs, eats meat, is a hunter, is an arctic animal and is a
coastal animal.
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Figure 3: Ground truth dominance scores of all attributes
(columns) in all categories (rows) in PubFig (left) and AWA
(right). Brighter intensities correspond to higher domi-
nance. The dominance values fall in [0,70] for PubFig and
[0,143] for AWA. Green / red boundaries indicate whether
the attribute is present / absent in that category.

pert et al. [20] for PubFig and AWA respectively to train our
attribute dominance predictor described in Section 3.2.

4.2. Dominance Analysis

In Figure 3 we show the ground truth dominance scores
of all attributes (expanded vocabulary) in all categories as
computed using Equation 1. We also show the ground truth
attribute presence / absence of the attributes. We make three
observations (1) Different categories do in fact have differ-
ent attributes that are dominant in them (2) Even when the
same attribute is present in different categories, it need not
be dominant in all of them. For instance, “Has tough skin”
is present in 23 animal categories but has high dominance
values in only 12 of them. (3) Absence of attributes can
on occasion be dominant. For instance, since most animals
walk on four legs, animals who don’t walk on four legs have
“Does not walk on four legs” as a dominant attribute.

To analyze whether dominance simply captures the rela-
tive strength of an attribute in an image, we compare the
ground truth dominance of an attribute across categories
with relative attributes [24]. Relative annotations for 29 at-
tributes in 60 categories in the development set of the Pub-
Fig dataset [19] were collected in [3]. Six of our 13 at-
tributes are in common with their 29. For a given category,
we sort the attributes using our ground truth dominance
score as well as using the ground truth relative strength of
the attributes in the categories. The Spearman rank corre-
lation between the two was found to be 0.46. To put this
number in perspective, the rank correlation between a ran-
dom ordering of attributes with the dominance score is 0.01.
The inter-human rank correlation computed by comparing
the dominance score obtained using responses from half the
subjects with the scores from the other half is 0.93. The rank
correlation between our predicted dominance score and the
ground truth is 0.68. The rank correlation between a fixed

ordering of attributes (based on their average dominance
across all categories) and the ground truth is 0.44. This
shows that (1) dominance captures more than the relative
strength of an attribute in the image (2) our attribute domi-
nance predictor is quite reliable (3) inter-human agreement
is high i.e. humans do consistently tend to name some at-
tributes before others and (4) this ordering is different for
each category. This validates the underlying assumptions
of our work. Similar statistics using all our attributes on
all categories for AWA & PubFig are: inter-human agree-
ment: 0.94 & 0.93, quality of predicted dominance: 0.66 &
0.61, quality of a fixed global ordering of attributes: 0.54
& 0.50, random: 0.01 & 0.01. One could argue that the
rare attributes are the more dominant ones, and that TFIDF
(Term Frequency - Inverse Document Frequency) would
capture attribute dominance. Rank correlation between at-
tribute TFIDF and the ground truth attribute dominance is
only 0.69 for both PubFig and AWA, significantly lower
than inter-human agreement on attribute dominance (0.93
and 0.94).

4.3. Zero-shot Learning

We evaluate zero-shot performance using the percentage
of test images assigned to their correct labels. We com-
pare our proposed approach of using appearance and dom-
inance information both (Equation 6) to the baseline ap-
proach of Lampert et al. [20] that uses appearance informa-
tion alone (Equation 5). We also compare to an approach
that uses dominance information alone (i.e. uses only the
pdn′(x) term in Equation 6). To demonstrate the need to
model dominance of attribute presence and absence sep-
arately, we report results using a compressed vocabulary
where the ground truth dominance score (Equation 1) of the
presence and absence of an attribute is combined (sum), and
we learn only M dominance predictors instead of 2M . The
results are shown in Figures 4a and 4d. Since AWA has a
pre-defined train/test split, we can report results only on one
split. The baseline curve is noisy across different values of
K. This is because not all attribute predictors are equally
accurate. If the prediction accuracy of an attribute is poor,
it can reduce the overall appearance-only zero-shot learning
performance. This leads to lower accuracy after K > 20.
Note that our approach is significantly more stable. We see
that the incorporation of dominance can provide a notable
boost in performance compared to the appearance-only ap-
proach of Lampert et al. [20], especially for the PubFig
dataset. We also see that the expanded vocabulary for mod-
eling dominance performs better than the compressed ver-
sion. To evaluate the improvement in performance possible
by improved modeling of dominance, we perform zero-shot
learning using the responses of half the subjects to com-
pute the ground truth dominance score and responses from
the other half to compute the “predicted” dominance score,
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(a) PubFig: Zero-shot (same legend as b)
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(f) AWA: Description (same legend as c)

Figure 4: Our approach outperforms strong baselines on a variety of human-centric applications.

while still using trained attribute classifiers for appearance.
At the highest value of K, PubFig achieves 69% accuracy
and AWA achieves 68% accuracy. We see that better predic-
tion of dominance values would lead to a huge improvement
in accuracies. Note that for a fixed value of K (x-axis),
different categories use their respective K most dominant
attributes that a user is likely to list, which are typically dif-
ferent for different categories. Our accuracies on the AWA
dataset are not directly comparable to the numbers in Lam-
pert et al. [20] because we use only 27 attributes instead of
85 used in [20]. We see that by incorporating dominance,
we achieve 83.7% of their performance while using only
31.7% of the attributes.

4.4. Image Search

To run our experiments automatically while still using
queries generated by real users, we collected the queries for
all possible target categories offline (Figure 2). When ex-
perimenting with a scenario where the user provides queries
containing K attributes, for each target, we use the K at-
tributes selected most often by the users to describe the tar-
get category (Equation 1). As the evaluation metric, we use
the log of the rank of the true target category8 when images
in the dataset are sorted by our approach (Section 3.4) or the
baselines. Lower is better. We compare to the same base-
lines as in zero-shot learning. The appearance-only baseline
corresponds to the approach of Kumar et al. [18]. Results
are shown in Figures 4b and 4e. Our approach significantly
outperforms all baselines.

8The dataset contains 10 images per category. We use the lowest rank
among these 10 images.

4.5. Textual Description

We evaluate the textual descriptions generated by our ap-
proach in two ways. In the first case, we check what per-
centage of the attributes present in our descriptions are also
present in the ground truth descriptions of the images. The
ground truth descriptions are generated by selecting the K
most dominant attributes using the ground truth dominance
score of attributes (Equation 1). The results are shown in
Figures 4c and 4f. We compare to a strong baseline (global)
that always predicts the same K attributes for all images.
These are the K attributes that are on average (across all
training categories) most dominant. We also compare to an
approach that predictsK random attributes for an image. To
make the baselines even stronger, we first predict the pres-
ence / absence of attributes in the image using attribute clas-
sifiers, and then pick K attributes from those randomly or
using the compressed dominance regressor. We see that our
approach significantly outperforms these baselines. Our im-
proved performance over the global baseline demonstrates
that our approach reliably captures image-specific domi-
nance patterns. We also report inter-human agreement as
an upper-bound performance for this task.

The second evaluation task consists of human studies.
We presented the three descriptions: dominance-based (our
approach), global dominance based (same attributes for all
images) and random, along with the image being described
to human subjects on Amazon Mechanical Turk. We asked
them which description is the most appropriate. We con-
ducted this study using 200 images for PubFig and 50 im-
ages for AwA with 10 subjects responding to each image.
For PubFig & AWA, subjects preferred our description 73%



& 64% of the times as compared to global (22% & 28%)
and random (5% & 8%). Clearly, modeling attribute dom-
inance leads to significantly more natural image descrip-
tions. We repeated this study, but this time with ground
truth dominance and ground truth presence / absence of at-
tributes. For PubFig & AWA, subjects preferred our de-
scription 73% & 84% of the times as compared to global
(25% & 16%) and random (2% & 0%). This validates our
basic assumption that users use dominant attributes when
describing images. This is not surprising because we col-
lected the dominance annotations by asking subjects which
attributes they would use to describe the image (Figure 2).

5. Conclusion and Future Work
In this paper we make the observation that some at-

tributes in images pop out at us more than others. When
people naturally describe images, they tend to name a subset
of all possible attributes and in a certain consistent order that
reflects the dominance of attributes in the image. We pro-
pose modeling these human tendencies, i.e., attribute dom-
inance and demonstrate resultant improvements in perfor-
mance for human-centric applications of computer vision
such as zero-shot learning, image search and automatic gen-
eration of textual descriptions of images in two domains:
faces and animals.

Future work involves incorporating the notion of domi-
nance for relative attributes [24]. Relative attributes allow
users to provide feedback during image search [16] or while
training an actively learning classifier [25]. When the user
says “I want shoes that are shinier than these” or “This im-
age is not a forest because it is too open to be a forest”,
perhaps users name attributes that are dominant in the im-
ages. Incorporating this when updating the search results or
re-training the classifier may prove to be beneficial. More-
over, when collecting pairwise annotations for relative at-
tributes where a supervisor is asked “does the first image
have more/less/equal amount of attribute am than the sec-
ond image?”, the responses from human subjects may be
more consistent if we ensure that the two images being com-
pared have equal dominance of attribute am.
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