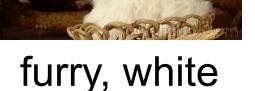
Attribute Dominance: What Pops Out?


Naman Turakhia (Georgia Tech)

Devi Parikh (Virginia Tech)

Intuition

smiling, teeth visible

white, male

sharp teeth, scary

wearing lipstick, heavy makeup

bearded, wearing glasses

- Certain attributes pop out more than others: strong presence, unusualness, absence of other more dominant attributes, etc.
- Humans tends to name the most dominant attributes first
- Order of naming attributes reveals information about the image
- Modeling attribute dominance can improve performance on humancentric applications: zero-shot learning, image search, description

Approach: Modeling Dominance

Model interplay between attributes

$$\hat{d}_t^m = \boldsymbol{w}_m^T \phi(\boldsymbol{x}_t)$$

Predicted dominance score Parameters learnt Image features: of attribute a_m on image \boldsymbol{x}_t via a linear regressor attribute scores

$$pd_k^m(\boldsymbol{x}_t) = \frac{s_k^m(\boldsymbol{x}_t)}{\frac{2M}{2M}}$$

Probability that attribute is k^{th} most dominant

$$s_k^m(\boldsymbol{x}_t) = \frac{1}{\log(|r^m(\boldsymbol{x}_t) - k| + 1) + 1}$$

Rank of attribute according to predicted dominance score

Approach: Zero-shot Learning

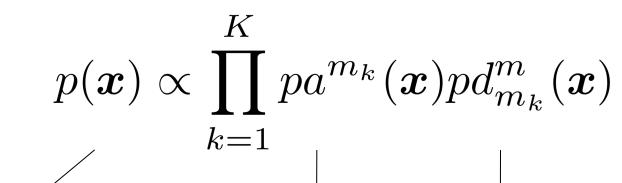
Appearance-based [Lampert 2009]

 $pa_{n'}(\boldsymbol{x}) \propto \prod pa^m(\boldsymbol{x})$

Dominance-based

$$pd_{n'}(\boldsymbol{x}) \propto \prod_{k=1}^{K} pd_k^{m_k}(\boldsymbol{x})$$

Combined


$$p_{n'}(\boldsymbol{x}) = pa_{n'}(\boldsymbol{x})pd_{n'}(\boldsymbol{x})$$

An image is more likely to belong to a category if

- ♦ Image satisfies the stated attribute presence
- ♦ Attributes named first by supervisor are most dominant in image

More natural interface for zero-shot learning: opportunity to leverage human tendencies

Approach: Image Search

Probability that image is the target image

How well image satisfies attribute presence in query (~ Kumar 2010)

How well image's dominance pattern matches order of attributes in query

Approach: Textual Image Description

Task: Describe an input image using k attributes Approach: Use k most dominant attributes

Data Collection

Public Figures Face Database (PubFig): 200 categories, 13 attributes

Christina Ricci Abhishek Bachan Miley Cyrus Daniel Craig Famke Jannsen Danny Devito

6 subjects per question

Animals with Attributes (AWA): 50 categories, 27 attributes

Has bulbous/bulging/round body

Is a coastal animal

Observations:

What pops out?

For each montage shown below, please tell us which 1 of the 4 properties/attributes of the animal pops out at you. In other words, if you had to describe all photographs of the animal in the group or montage using

♦ Same (present) attribute has different

♦ Absence of attributes can be dominant

Correlation with: AWA PubFig (PubFig-subset)

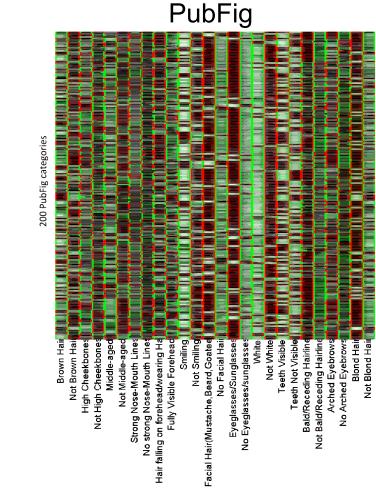
♦ Ground truth TFIDF: 0.69 0.69

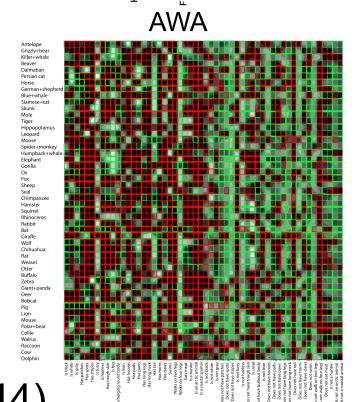
♦ Other subjects: 0.94 0.93 (0.93)

♦ Ground truth relative attributes: (0.46)

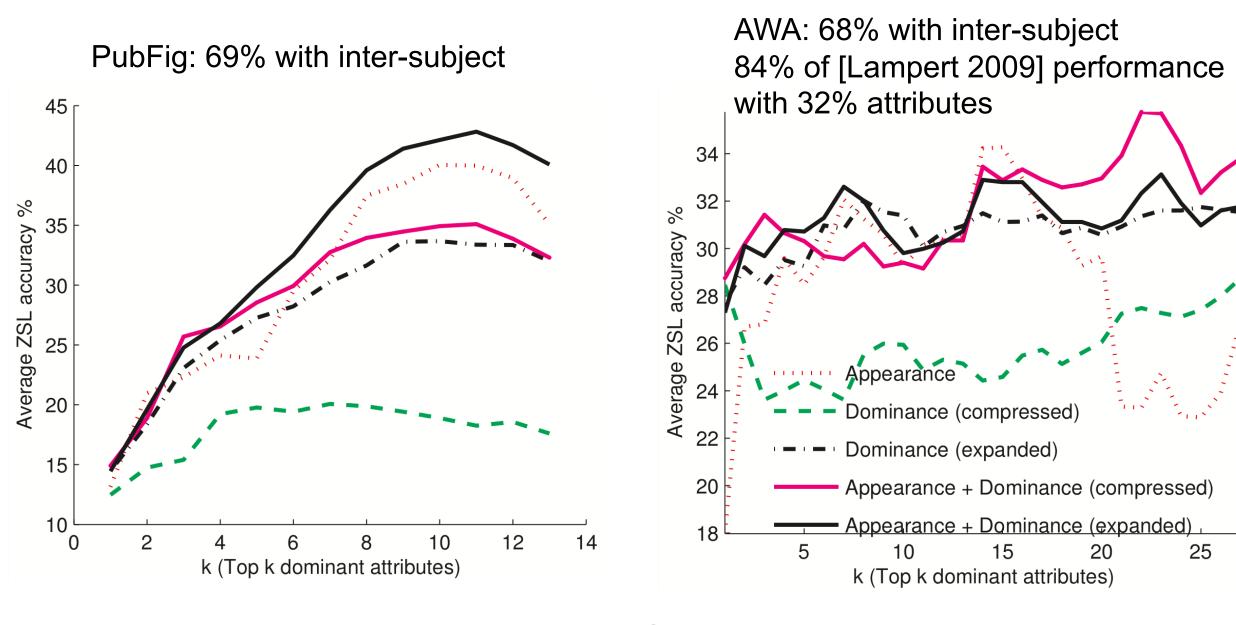
♦ Predicted dominance: 0.66 0.61 (0.68)

dominance in different categories

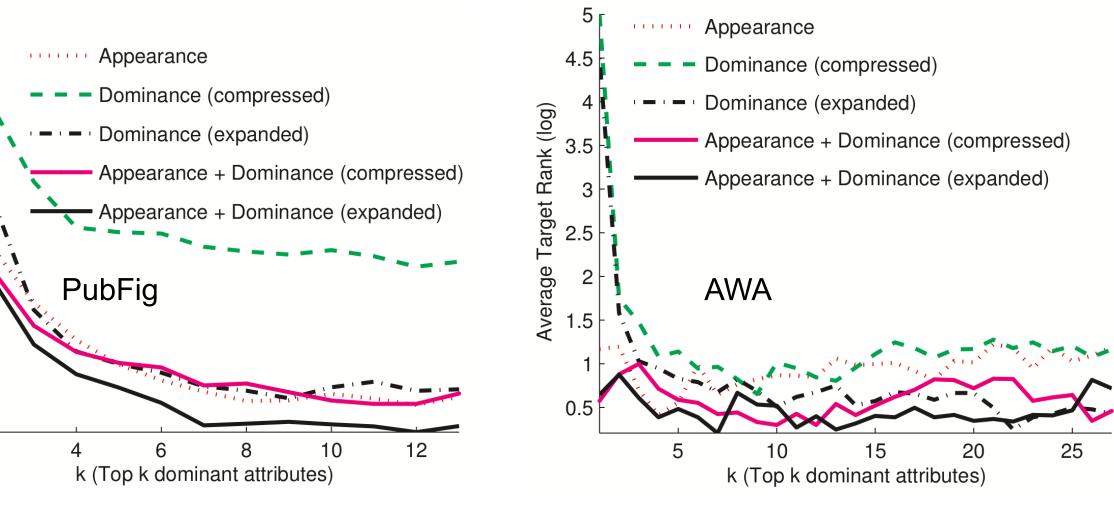

Does not have bulbous body


Is not a coastal animal

GT dominance: #subjects picked attribute



♦ Ground truth global dominance: 0.54 0.50 (0.44).


Brighter intensities correspond to higher dominance. Green / red boundaries indicate whether the attribute is present / absent in that category.

Results

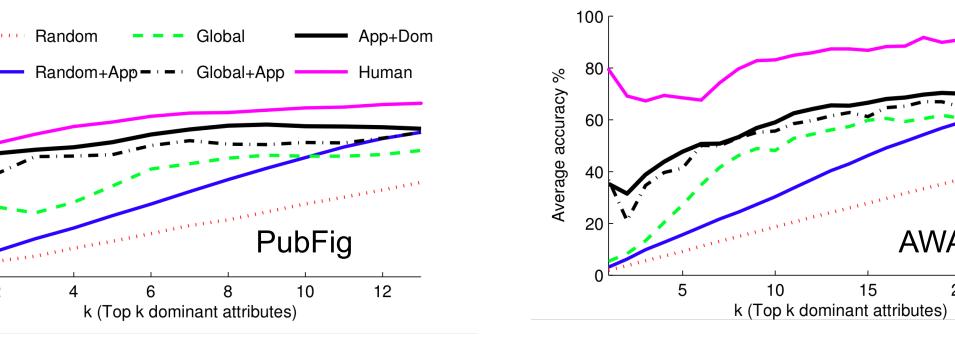

Zero-shot Learning

Image Search

Image Description

Image Description: User Studies

	PubFig	AWA
Random	5%	8%
Global	22%	28%
Ours	73%	64%

	GT	PubFig	AWA
	Random	2%	0%
	Global	25%	16%
	Ours	73%	84%
,			

Validates our intuition!

Conclusion

- Attribute dominance: some attributes pop out more than others
- Contains information about image content
- Humans name dominant attributes first
- Leverage human tendencies to read between the lines
- Improved performance at human-centric applications: zero-shot learning, image search and image description