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Abstract

Many cues have been proposed for contour detection or
image segmentation. These include low-level image gradi-
ents to high-level information such as the identity of the ob-
jects in the scene or 3D depth understanding. While state-
of-the-art approaches have been incorporating more cues,
the relative importance of the cues is unclear. In this pa-
per, we examine the relative importance of low-, mid- and
high-level cues to gain a better understanding of their role
in detecting object contours in an image. To accomplish
this task, we conduct numerous human studies and com-
pare their performance to several popular segmentation
and contour detection machine approaches. Our findings
suggest that the current state-of-the-art contour detection
algorithms perform as well as humans using low-level cues.
We also find evidence that the recognition of objects, but
not occlusion information, leads to improved human perfor-
mance. Moreover, when objects are recognized by humans,
their contour detection performance increases over current
machine algorithms. Finally, mid-level cues appear to of-
fer a larger performance boost than high-level cues such as
recognition.

1. Introduction

Segmentation and the related task of contour detection
are being leveraged for an increasingly wide variety of com-
puter vision tasks. For instance, segmentation has been used
for object recognition [2, 25, 10, 29, 33], optical flow esti-
mation [35], stereo [31], and image compositing [27]. In
this paper, we focus on the task of object level contour de-
tection and segmentation.

A fundamental question is the degree to which high-level
information is necessary when performing object segmenta-
tion [33, 10, 16]. For instance, is object segmentation pos-
sible even if the objects in the scene cannot be recognized?
How important is the 3D understanding [12, 15] of a scene
in segmenting its objects? It is commonly assumed that ob-
ject boundaries correspond to changes in color or texture
[3, 17, 6] (Figure 1(a)). However, boundaries referred to

Figure 1: Illustrative examples of (a) an easy to segment object, (b)
object with albedo edges, (c) illusory contours and (d) a difficult object to
segment without object level knowledge.

as illusory contours [34] may not be visible (Figure 1(c)),
and many color or texture edges correspond to albedo edges
and not actual boundaries (Figure 1(b)). Solving these am-
biguities may require mid-level information such as contour
reasoning [19, 36, 8] or the use of Gestalt laws [14] for per-
ceptual grouping. Finally, it may be necessary to reason
at the object level to correctly determine object boundaries
[37, 16]. For example, when segmenting a dark horse with
white feet the feet are commonly missing when only using
low and mid-level cues (Figure 1(d)).

Previous works have proposed the use of various cues
and their combinations for image segmentation, each with
varying amounts of low-, mid- and high-level information.
However, the relative importance of these cues is less un-
derstood. In this paper, we study the relative importance
of these cues to help provide guidance for the future devel-
opment of contour detection and segmentation algorithms.
These cues include low-level information such as color
edges, mid-level information related to contours and tex-
tures, and high-level information such as object recognition
and occlusion reasoning. In this paper, we use the term
“mid-level” to refer to non-local gradient, texture and edge
information that is commonly used by state-of-the-art con-
tour detection and segmentation approaches. For example,
this may include finding long smooth contours [19, 36, 8],
or using Gestalt laws [14]. We do not use the term “mid-
level” to refer to semantically meaningful cues, such as
figure-ground information, object attributes, etc.

We perform our analysis using numerous human studies
and machine experiments described in Section 3. Specifi-
cally, we address the problem of object boundary detection
while varying the amount and type of information available.
For instance, we can control the amount of local informa-
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tion by varying the size of the visible patch surrounding the
potential object boundary [11]. We may also manipulate the
type of information shown by only displaying intensities or
by rotating the color channels. For each of these tasks, the
difficulty of recognizing the objects and their occlusion re-
lationships varies providing insights into their relative roles.
While it is difficult to directly infer causality relationships,
as shown in Section 4, correlations between contour detec-
tion, low-level information, object recognition and occlu-
sion reasoning can be found.

Our studies support three hypotheses. First, further re-
search on low-level cues may not yield improved segmen-
tation results. Our studies show that humans do not out-
perform state-of-the-art segmentation and contour detection
methods using only small image patches. This supports the
earlier findings of Fowlkes [11]. Second, the recognition
of objects leads to a notable improvement in contour de-
tection accuracy, while occlusion information is less essen-
tial. Assuming there are no confounding factors, our ex-
periments show that the improvements in contour detection
accuracy due to larger patch sizes is caused in part by im-
proved recognition of the objects in the patches. Finally,
while recognition of objects leads to a significant improve-
ment in contour detection, a larger performance boost is
gained from the increase in mid-level information as the an-
alyzed image patches gain in size.

2. Previous work
In this section, we describe previous works using human

subjects to study segmentation and contour detection, as
well as, various works that have used segmentation-based
approaches to object recognition and discovery.

The problem of image segmentation and contour detec-
tion are closely related. Rivest and Cavanagh [26] studied
various sources of information used by humans for contour
localization. Their findings supported the hypothesis that
information related to luminance, color, motion and texture
are integrated at a common site in the brain. Closely related
to our work, Grady et al. [13] find that if given a bounding
box, high level semantic information is not needed for hu-
mans to find a consistent segmentation, and conclude the
problem is well-posed. Fowlkes [11] studied the perfor-
mance of humans at depth boundary detection with vary-
ing window sizes. He found machines were roughly equiv-
alent to humans when shown grey-scale patches. A large
database of human labeled boundaries was collected and
analyzed by Martin et al. [17]. Each contour segments a
region into foreground and background objects, known as
figure-ground labeling. Fowlkes et al. [12] study the prob-
lem of figure-ground labeling given both local and global
information, and find that image luminance does provide
additional information over just the knowledge of the depth
boundary shape. Peterson [24] hypothesizes that object

(a) Color (b) ColorU (c) ColorUR (d) ColorURI

(e) ColorURI* (f) Gray (g) GrayU

Figure 2: Example patch visualizations from our seven scenarios for our
human studies (best viewed in color).

recognition may proceed figure-ground organization in hu-
mans. McDermott [18] studied how contour junctions may
be detected. The role of motion parallax in segmentation
was studied by [38]. Related to segmentation, numerous
studies have addressed the problem of selective attention in
humans [7]. Recently, the use of human studies has been
applied to several computer vision problems to help in un-
derstanding the challenges that remain. These include rec-
ognizing objects in tiny images [32, 23], the tradeoffs be-
tween features, learning algorithm and the amount of train-
ing data [21], the roles of local and global information in
images [20] and person detectors [22]. In this paper, we
conduct human studies to understand the relative impor-
tance of low-, mid- and high-level information for contour
detection.

Since there are numerous works using segmentation and
contours for object recognition, we only reference a few
representative examples here. Belongie et al. [2] proposed
using contours for recognition, while Rabinovich et al. [25]
used segments as the basis for contextual reasoning between
objects in an image. Segmentation approaches to object dis-
covery were proposed by Sivic et al. [30] and Lee and Grau-
man [16]. Shotton et al. [29], Ferrari et al. [10], and Tu et
al. [33] all proposed algorithms to jointly segment and rec-
ognize objects in an image. In this paper we systematically
quantify the dependence between segmentation and high-
level tasks such as recognition.

3. Experimental setup
In this paper, our goal is to examine the role of low-

level, mid-level and high-level information in object seg-
mentation. Instead of measuring segmentation performance
directly, we measure the accuracy of contour detection, i.e.,
the accuracy of the segment boundaries, as done by previous
studies on machine segmentation performance [17, 1]. The
detection of contours has the additional advantage in that it



is possible to perform the task using only local information.
This allows us to vary the amount of local (low-level) vs.
global (high-level) information available during our human
studies. However, a set of contours does not necessarily cre-
ate an image segmentation, since they may not form closed
loops. A few missing contours can also join two segments
creating a poor segmentation of an image. Despite these
drawbacks, measures of contour detection accuracy have
been shown to correlate well with segmentation accuracy,
and approaches have been proposed to create segmentations
from possibly incomplete contours [8, 1].

In the next section we discuss the various machine algo-
rithms used in our experiments, followed by a description
of the experimental setup for our human studies.

3.1. Machine experiments

We experiment with six different machine approaches
to generating contours, ranging from naive to state-of-the-
art methods. Two of these are based on low-level gra-
dient information, while the other four are unsupervised
segmentation-based approaches. For the segmentation-
based approaches, we use the authors’ publicly available
implementation. Gradient: The first approach is a naive
method based on local gradient information. Contours are
detected simply by thresholding the magnitude of the gra-
dients at a pixel. Canny: The second approach detects con-
tours in the image by running the classical canny edge de-
tector [3]. We used the in-built MATLAB implementation.
Ncut: This is the segmentation-based approach of [28] that
builds a graph on neighboring pixels. The weights of the
edges between pixels are determined using the intervening
contours cue that depends on the magnitude of the color
gradients between pixels. The graph is partitioned using
normalized cuts, resulting in a segmentation of the image.
Mean Shift: This segmentation-based approach uses the
mean-shift clustering algorithm for image segmentation [5].
Each pixel is represented by its five dimensional position
in color and location. The modes in this five dimensional
space that are found using the mean-shift clustering algo-
rithm correspond to a clustering of the image. FH: This
segmentation-based approach by Felzenszwalb and Hut-
tenlocher [9] is an efficient graph-based approach that de-
fines edge-weights based on not just the gradient across
the edge, but relative to gradients observed in a neighbor-
hood. This allows the method to capture perceptually im-
portant non-local aspects of the image. It can preserve de-
tail in low-variability image regions while ignoring detail in
high-variability regions. UCM: This segmentation-based
approach uses a hierarchical representation of the image
called Ultrametric Contour Maps [1]. It integrates local
contour cues along the regions boundaries and surround-
ing region attributes. Recent results show this approach to
achieve state-of-the-art performance [1].

(a) low (b) medium (c) high

(d) low (e) medium (f) high

Figure 3: Examples of low, medium and high gradient patches (largest
size) from our Contour patch dataset with (top) no object contour and (bot-
tom) with object contour.

3.2. Human experiments

Our human studies measure the accuracy of our sub-
jects on contour detection, recognition, occlusion (i.e. depth
boundary) detection and figure-ground labeling tasks on im-
age patches. We perform these tasks under numerous sce-
narios with varying amounts and types of information avail-
able. Each of these scenarios was designed to help separate
the influence of different types of low-, mid- and high-level
information. For instance the patch size can control the
amount of mid and high-level information available. The
knowledge of high-level information such as the recogni-
tion of objects can be reduced by flipping the patch upside
down or by manipulating the color information, with a min-
imal affect on mid-level non-semantic information.

For each scenario, we showed subjects a patch with small
red and yellow squares equidistant from the center, as seen
in Figure 2. We asked them several questions related to
the red and yellow squares pertaining to contour detection,
depth boundary detection, figure-ground assignment and
recognition. Specifically, the questions were:

• Do the red and yellow squares lie on the same ob-
ject, or different objects? The possible answers were:
“Same object” or “Different object”.

• Is the object under the red square in front of or behind
the object under the yellow square? The possible an-
swers were: “Red in front of Yellow”, “Yellow in front
of Red” and “Neither”.

• Which object does the red square belong to? Subjects
were to provide a one word free form answer.

• Which object does the yellow square belong to?
Again, subjects were to provide a one word free form
answer.

.



We conducted these human studies on Amazon’s Me-
chanical Turk. Each subject answered the questions above
for 6 patches at the same time. Reasoning about multiple
patches for a task before moving on to the next task limits
the influence of one task on the other. Getting responses for
all tasks pertaining to a patch from the same subject reduces
inter-subject variabilities. In our experiments, each patch
was assigned to 10 unique subjects. Since the experimental
setup and viewing environment cannot be fully controlled
using Amazon’s Mechanical Turk, these studies are meant
to merely serve as a lower bound on human performance.

We presented the patches using seven different scenarios,
each with a different visualization to vary the low-level in-
formation available (color vs. gray-scale) and the ease with
which high-level information can be inferred (manipulating
spatial layout and color information). (1) Color: A reg-
ular RGB patch was shown. (2) ColorU: The color patch
was flipped upside down before presenting it. (3) ColorUR:
The RGB channels of the patch were rotated to be BRG, and
the patch was flipped upside down before presenting it. (4)
ColorURI: The RGB channels were rotated and inverted.
So the three color channels became 255-B, 255-R and 255-
G. The patch was flipped upside down before presenting it.
(5) ColorURI*: The color channels were rotated, and only
one of the channels was inverted. So the three color chan-
nels became B, 255-R and G. The patch was flipped upside
down before presenting it. (6) Gray: An upright patch was
presented in gray scale and (7) GrayU: A gray scale patch
was presented after flipping it upside down. Examples of
these visualizations can be seen in Figure 2.

4. Results
We now describe our contour patch dataset, and the re-

sults of the machine experiments and human studies.

4.1. Contour patch dataset

We build our contour patch dataset from a subset of 185
images in the SUN dataset [4]. The dense and detailed ob-
ject segmentations in the SUN dataset are appropriate for
our study of object boundary detection. We did not use
the popular Berkeley Segmentation Dataset [17] since many
of the labeled contour boundaries correspond to changes in
albedo and not object boundaries. We extract patches from
a total of 240 locations across these images. Half of these
locations fall on an object boundary as per the SUN ground
truth annotations, and the other half do not have an object
boundary within a 15x15 pixel neighborhood. To obtain
a varied distribution of patch and contour types, as shown
in Figure 3, a third of the locations have low-gradients i.e.
they have at most a gradient magnitude of 10 in the sur-
rounding 7x7 patch. Another third of the locations have
medium-gradients i.e. they have a gradient magnitude be-
tween 10 and 30, and none of the pixels in the 7x7 neigh-

borhood have a gradient magnitude higher than 30. The last
third of the locations have high-gradients with a gradient
magnitude of at least 30 in a 7x7 neighborhood. Since the
object boundaries are occasionally not well localized in the
SUN dataset, the presence or absence of a contour was ver-
ified using Amazon’s Mechanical Turk. Of the original 240
patches, 196 were verified and used for our experiments.
We extract patches at seven different sizes centered at each
of the 196 locations: 7x7, 9x9, 15x15, 25x25, 33x33, 63x63
and 127x127. This results in a total of 1372 patches in our
dataset. Each patch is presented using seven different visu-
alizations to 10 subjects, resulting in about 96k responses to
each of our four questions. The dataset is available on the
authors’ website.

4.2. Machine algorithms

We detected contours in the 185 images using the six ma-
chine approaches described above. If a contour boundary
was detected within a 5x5 window of the central pixel, the
patch was considered to have a contour boundary, and other-
wise not. This is to account for any small location errors in
the SUN dataset, and to mirror the human studies as closely
as possible, which had the red and yellow squares separated
by 5 pixels. The parameters for the various segmentation
algorithms were selected by optimizing their contour detec-
tion performance on an independent set of patches extracted
from a disjoint set of images from the SUN dataset. The
threshold for the gradient-based contour detector was set to
20. We used the default parameters for canny (automatically
determined threshold and sigma = 1). We generated 10 seg-
ments for every image using normalized cuts. For the mean
shift segmentation algorithm, the parameters were Spatial-
Bandwidth = 7, RangeBandwidth = 6.5 and MinimumRe-
gionArea = 200. The parameters for FH were set to sigma
= 1, K = 500, min = 200. The parameter for UCM was set
to k = 0.1.

The results of the machine tests on our dataset for con-
tour detection can be seen in Figure 6. The local edge based
methods, gradient and Canny perform relatively poorly
with 58.3% and 63.9% respectively. The segmentation
approaches, mean shift (74.2%), FH (74.2%), and UCM
(74.7%) all perform roughly the same with normalized cuts
(67.0%) doing worse. Clearly, the mid-level information
used by the segmentation approaches provides additional
accuracy. We provide a comparison between machine and
human accuracy in the following section.

4.3. Human Studies

Before we describe our results for the human studies,
we describe how human accuracies for the different tasks
are computed. The SUN dataset does not supply ground
truth for depth boundary detection or figure-ground label-
ing. For these tasks, we use the majority vote response of



Figure 4: Accuracies of (a) contour detection, (b) recognition, (c) depth boundary detection and (d) figure-ground labeling across window sizes for all
scenarios.

Figure 5: Scatter plots of contour detection accuracies vs. (a) recognition accuracies (corr = 0.944), (b) boundary detection accuracies (corr = 0.914) and
(c) figure-ground labelings (corr = 0.378) for all scenarios and window sizes.

Figure 6: Graph showing the accuracies of various machine approaches
(red) compared to human accuracies on the Color scenario (dark blue), the
Color scenario when an object in the patch was not recognized (light blue),
Gray scenario (gray), and ColorURI scenario (green).

our subjects at the largest patch size (127x127) using the
Color visualization as ground truth. For the depth bound-
ary detection task, we ignore the polarity of the response
(red in front of yellow or yellow in front of red), and sim-
ply check if the subject correctly detected the presence of a
depth boundary or not, i.e., did he choose “neither” or not.
To measure recognition accuracy, we generated a ground
truth dataset of object labels by gathering 30 responses in
addition to our original 10 responses to name objects under

the red and yellow squares using (127x127) patches with the
Color visualization. The freeform answers provided were
compared to the answers provided by the original subjects.
If corresponding words were found, ignoring capitalization
and punctation, the objects were said to be recognized. If
at least one object was recognized correctly in the patch, it
was labeled as recognized.

We now analyze the results of our human studies. We be-
gin by providing an overview of the results and analyze the
accuracies given low-level and mid-level cues. Next, we ad-
dress the dependencies between contour detection and im-
age understanding, i.e., recognition, depth boundaries (oc-
clusion) and figure-ground labels. Finally, we compare hu-
mans accuracies to machines.

An overview of our human studies results can be seen in
Figures 4 and 5. Figure 4 plots the contour detection accu-
racy, recognition accuracy, depth boundary detection accu-
racy, and figure-ground labeling accuracy vs. the patch size
for all scenarios. In each case, the accuracies increase with
the patch size visible to the subjects. Figure 5 shows three
scatter plots of contour detection accuracy vs. recognition
accuracy, depth boundary detection accuracy, and figure-
ground labeling accuracy. Each data point corresponds to
a scenario and window size. A strong correlation is visible



Figure 7: Plot of contour detection accuracies across patch sizes for the
human study Color scenario with high, medium and low gradient patches.

between the accuracy of contour detection and both recog-
nition accuracy and depth boundary detection accuracy.

In Figure 7, we show the contour detection accuracy for
the patches with low, medium an high gradients for the
Color scenario. Accuracy typically varies by 5% between
patches with low and high contrast. Other scenarios show
similar differences.

Low-level We can study the performance of contour de-
tection using low-level cues by analyzing the accuracies us-
ing small windows in Figure 4(a). The results can be clearly
split into two groups. The scenarios in which the relative
color information is kept, Color, ColorU, ColorUR and Col-
orURI, all have higher accuracies than the scenarios with-
out color, Gray and GrayU, and ColorURI*, which does not
maintain relative color information. It is interesting to note
that low-level contour detection appears to be invariant to
color rotation, and the patch being flipped upside down.

Mid-level We refer to non-local and non-semantic con-
tour and texture information as “mid-level information.” We
do not use the term “mid-level” to refer to figure-ground or
object attribute information. In Figure 4, the contour de-
tection accuracies increase with window size, but it is un-
clear whether this increase is due to more mid-level cues
being visible or to better image understanding using high-
level knowledge. To separate the effect of high-level knowl-
edge from mid-level cues, we plot in Figure 8 the contour
detection accuracies conditioned upon whether at least one
object was recognized correctly (R=1) or not (R=0). We
also conditioned on whether the presence of a depth bound-
ary was correctly labeled (D=1) or not (D=0). The results
are averaged across all scenarios. In each of the four possi-
ble cases, the accuracies increase substantially with window
size by about 15%. For example, even if an object was not
recognized (R=0) and the depth boundary was not correctly
labeled (D=0), contour detection accuracies still increased
with window size from 64% to 78%. If the increase in accu-
racy with window size in Figure 4 were solely do to recog-

Figure 8: Contour accuracies conditioned on correctly recognizing an
object and correctly detecting the presence of a depth boundary across
window sizes averaged over all scenarios. (blue, R=1) an object is cor-
rectly recognized, (red, R=0) not recognized, (solid, D=1) depth boundary
correctly labeled, (dotted, D=0) depth boundary incorrectly labeled.

nizing objects or detecting depth boundaries we would ex-
pect the curves in Figure 8 to be flat. This provides strong
evidence that mid-level cues are important for object seg-
mentation, assuming there are no other significant sources
of high-level information beyond recognition and depth un-
derstanding that led to the observed increase.

Depth boundaries In Figure 5(b), the knowledge of a
depth boundary within the patch appears strongly corre-
lated (corr = 0.914) to contour detection accuracy. How-
ever, in Figure 8 when the contour detection accuracy is
conditioned on labeling the presence of a depth boundary
correctly (solid vs. dotted lines) there is only a negligi-
ble difference. Specifically, the contour detection accuracy
is approximately the same regardless of whether the sub-
ject correctly labels the presence of a depth boundary (solid
green line) or not (dotted green line). Hence, the correla-
tion observed in Figure 5(b) may be primarily due to both
depth boundaries and contours being easier to detect with
larger patch sizes. In Figure 5, the change in depth bound-
ary detection accuracy (65% to 72%) across patches sizes
and scenarios is also quite small with respect to the changes
in contour detection accuracy (65% to 85%.) These obser-
vations make it unlikely that the understanding of depth had
a significant impact on the accuracy of the detected contours
in our studies.

Figure-ground Unlike depth boundary detection, figure-
ground knowledge does not appear to be strongly correlated
(corr = 0.378) to contour detection accuracy as shown in
Figure 5(c). The use of patches flipped upside down in
some scenarios and right side up in others, resulted in two
distinct groupings in Figure 5(c). In upside down patches,
the shading information available might lead to the wrong
figure-ground interpretation, since humans typically assume
a scene is lit from above. However, this misinterpretation
does not appear to adversely affect contour detection per-



Figure 9: Trends in contour detection accuracy across scenarios. The
scenarios in which the patches are easier to recognize achieve the highest
contour detection accuracies.

formance.

Recognition The role of recognition in contour detection
accuracy is quite interesting. Figure 5(a) shows a strong
correlation (corr = 0.944) between recognition accuracy and
contour detection accuracy. Unlike the results conditioned
on correctly labeling the depth boundary, Figure 8 shows
a consistent increase in contour detection accuracy (red vs.
blue line) when the subjects correctly recognize at least one
object in the patch across window sizes. From these figures
it is unclear whether their is causal relationship or just a cor-
relation between recognition and contour detection. That
is, does the knowledge of the objects in the patch help to
determine whether a contour is present? Or is it just that
patches in which objects can be recognized are also easy to
segment? To test the causality argument we can examine
the average results across various scenarios. For instance,
in Figure 9 we plot the average recognition and contour de-
tection accuracy for four color patch scenarios (Color, Col-
orU, ColorUR, and ColorURI) shown by the blue line, and
two gray patch scenarios (Gray, GrayU) shown by the red
line. In each of these cases, it can be argued that the low-
level and mid-level information remains constant since the
patches are just being flipped or the colors rotated or in-
verted. What does change is the ease in which the objects
in the patch are recognized. Assuming there are not other
confounding variables, the positive sloping lines in Figure 9
strongly support a causal relationship between recognition
and contour detection. Figures 8 and 9 suggest that recog-
nition of an object in the image patch can increase contour
detection accuracy from 4% to 6%.

Human vs. machine Figure 6 shows the contour detec-
tion performance of various machine algorithms vs. hu-
man performance on various scenarios. The segmentation-
based machine algorithms perform quite well with respect
to humans, achieving similar performance to humans with
15 × 15 color patches. Human detection using smaller
patches is similar to using Canny edge detection. If we

Figure 10: Illustration of the confusion matrices for various human and
machine experiments for contour labeling: (purple) both label with con-
tour, (blue) neither label with contour, (green, red) the labelings disagree.

examine patches in which the human subjects did not rec-
ognize objects (R=0) or in which the patches are hard to
recognize (ColorURI), machine performance is similar to
human performance on 33× 33 patches. However, humans
outperform machines by 5% on the Color scenario in which
recognition rates are much higher. We hypothesize the im-
proved performance over machines is due to this increase in
recognition.

Finally, we examine several confusion matrices for hu-
man contour detection performance on 15 × 15 patches in
the Color scenario with Mean Shift, FH and UCM machine
algorithms, in Figure 10. The labeling agreement between
humans and Mean Shift is slightly less than FH and UCM.
UCM and FH produce the most similar labels.

5. Discussion

The experiments show several interesting trends. For in-
stance, even after accounting for the knowledge of depth
boundaries and objects, an increase of approximately 15%
can be seen as the patch size increases. This implies a larger
performance boost is gained from mid-level non-semantic
information than the recognition of objects, which typically
shows a 5% gain in performance. However, it is possible
that other types of high-level information, which are not
modeled in our studies are partially responsible for this in-
crease.

Our studies did not find a strong relationship between
depth understanding and contour detection. However, hu-
mans viewing real-world scenes have access to depth infor-
mation directly from stereo imagery and motion parallax.
If these cues were also given to our subjects, depth infor-
mation would probably play a much larger role in contour
detection.

When comparing the human studies to machine results,
the state-of-the-art algorithms [5, 9, 1] do surprisingly well.
For instance, machine accuracies are nearly identical to hu-
mans with 33x33 patches when an object isn’t recognized.



Since humans have access to significant low- and mid-level
information in a 33x33 patch, it is worth asking to what
degree segmentation performance can improve using only
low and mid-level information. Perhaps the recognition of
objects is necessary to significantly improve segmentation
performance. Should segmentation and recognition be per-
formed jointly [10, 33, 29]?

In conclusion, this paper presents numerous human and
machine studies on image segmentation. We find evidence
that machines perform as well as humans using low-level
information. Mid-level information appears to provide a
larger boost in contour detection accuracy than the recog-
nition of objects. Finally, we hypothesize the recognition
of objects, but not depth boundary detection is necessary to
achieve human level performance.
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