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What Makes a Photograph Memorable?
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Abstract—When glancing at a magazine, or browsing the Internet, we are continuously exposed to photographs. Despite this
overflow of visual information, humans are extremely good at remembering thousands of pictures along with some of their visual
details. But not all images are equal in memory. Some stick in our minds while others are quickly forgotten. In this paper, we focus on
the problem of predicting how memorable an image will be. We show that memorability is an intrinsic and stable property of an image
that is shared across different viewers, and remains stable across delays. We introduce a database for which we have measured the
probability that each picture will be recognized after a single view. We analyze a collection of image features, labels, and attributes
that contribute to making an image memorable, and we train a predictor based on global image descriptors. We find that predicting
image memorability is a task that can be addressed with current computer vision techniques. While making memorable images is a
challenging task in visualization, photography, and education, this work is a first attempt to quantify this useful property of images.

Index Terms—Scene understanding, image memorability, global image features, attributes

1 INTRODUCTION

EOPLE have the remarkable ability to remember thou-
P sands of pictures they saw only once [1], [2], even when
they were exposed to many other images that look alike [3],
[4]. We do not just remember the gist of a picture, but we
are able to recognize which precise image we saw along
with some of its details [3]-[6]. However, not all images
are remembered equally well. Some pictures stick in our
minds whereas others fade away. The reasons why images
are remembered may be highly varied; some pictures might
contain friends, a fun event involving family members, or
a particular moment during a trip. Other images might not
contain any recognizable monuments or people and yet also
be highly memorable [2], [3], [5]. In this paper we are inter-
ested in this latter group of pictures: what makes a generic
photograph memorable?

Whereas most studies on human visual memory have
been devoted to evaluating how good average picture
memory can be, no work has systematically studied differ-
ences between individual images and if those differences
are consistent across different viewers. Can a specific pho-
tograph be memorable to all of us, and can we estimate
what makes it distinctive?

Similar to other subjective image properties, memorability
is likely to be influenced by the user context and also be sub-
ject to some degree of inter-subject variability [7]. However,
despite this expected variability when evaluating subjective
properties of images, there is often also a sufficiently large
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degree of consistency between different users’” judgments,
suggesting it is possible to devise automatic systems to esti-
mate these properties directly from images, ignoring user
differences. As opposed to other image properties, there are
no previous studies that try to quantify individual, every-
day photos in terms of how memorable they are, and there
are no computer vision systems that try to predict image
memorability. This is contrary to many other photographic
properties that have been addressed in the literature such
as photo quality [8], aesthetics [9], [10], interestingness [11],
saliency [12], attractiveness [13], composition [14], [15], color
harmony [16], and importance [17], [18]. Also, there are no
databases of photographs calibrated in terms of the degree
of memorability of each image.

In this paper, we characterize an image’s memorability
as the probability that an observer will detect a repetition
of a photograph at various delays after exposition, when
presented amidst a stream of images. This setting allows
us to measure long-term memory performance for a large
collection of images !. We mine this data to identify which
features of the images correlate with memorability, and we
train memorability predictors on these features. Whereas
further studies will be needed to validate these predictions
on other datasets, the present work constitutes an initial
benchmark for quantifying image memorability. A previous
version of this work appeared partly in [20] and [21].

Just like aesthetics, interestingness, and other metrics
of image importance, memorability quantifies something
about the utility of a photograph toward our everyday
lives. For many practical tasks, memorability is an espe-
cially desirable property to maximize. For example, this
may be the case when creating educational materials, logos,

1. Short-term memory typically can only hold 3 or 4 items at
once [19] and is generally tested over durations of just a few seconds;
since participants in our experiment had to hold many more images
in memory and were tested minutes to nearly one hour after the first
presentation, the experiments tackle long-term memory.
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(c) Least memorable images (34%)

Fig. 1. Each set of 8 images was selected according to one half
of the participants in our study as being: (a) Eight most memorable
images; (b) Eight average memorability images; (c) Eight least memo-
rable images. The number in parentheses gives the percent of times that
these images were remembered by an independent set of participants.

advertisements, book covers, websites, and much more.
Understanding memorability, and being able to automati-
cally predict it, lends itself to a wide variety of applications
in each of these areas. By analyzing memorability, educa-
tors could create textbook diagrams that stick in students’
minds, or mnemonic cartoons that help students learn a
foreign language. Memorability might also find application
in user interface design. Memorable icons could clarify a
messy desktop, and memorable labels could be stuck to
pill jars and entryways in retirement homes. Memorability
could also be used as a metric to pick out the most meaning-
ful images from a photo collection or video. For example,
a video could be summarized with just its most memo-
rable frames, omitting the intervening images that would
have been forgotten anyway. Farther in the future, we hope
understanding memorability could lead to more fundamen-
tal advances in computer vision and artificial intelligence. If
we can figure out what we humans remember, then we may
be able to design intelligent systems that acquire knowledge
that is similarly ecologically meaningful.
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2 MEASURING IMAGE MEMORABILITY

Although we all have the intuition that some images will
capture our attention and will be easier to remember than
others, quantifying this intuition has only been addressed in
limited settings in previous experiments. Previous research
has looked at the effects of emotional images on mem-
ory [22], [23], face photo memorability [24], [25], and the
memorability of facial caricatures [26], [27]. However, a
comprehensive study of the memorability of individual,
natural photos has been lacking. Are the photos remem-
bered by one person more likely to be remembered also by
somebody else? In this section, we characterize the consis-
tency of image memory across different observers and time
delays. In order to do so, we built a database of images
(Fig. 2), and we measured the probability of observers
remembering each image (Fig. 1 shows example images that
span a wide range of memorabilities).

2.1 How to Measure Image Memorability?

Cognitive psychologists have been studying the mecha-
nisms and representations of human memory for nearly
half a century. Studies have examined memory at multiple
scales (e.g., perceptual, short-term, and long-term storage)
and with a variety of tasks. Classical paradigms include
asking observers if a given image has been seen before
(repeat detection method) and two alternative forced choice
paradigms (i.e. two images are presented at test, one novel
and one old). Here we are interested in modeling an ecolog-
ical and explicit measure of image memorability — namely,
which images will tend to be best recognized when re-
encountered — and so we choose a repeat detection task.
The repeat detection paradigm also allows us to test famil-
iarity of a given image at different delays after encoding the
image (by showing the repeat image after a few seconds,
minutes, or hours). Thus, for present usage, we simply
define the ‘memorability” of each image as how often the
participants will tend to correctly detected a repetition of
the image. Since motivation, attention, and participant abil-
ity are all known to modulate raw memory performance,
we do not expect raw detection rates to be constant across
all participants and contexts. Therefore, we chose to analyze
memorability using rank scores, which we expect should be
more stable across changes in user focus and ability.

2.2 The Visual Memory Game
In order to measure image memorability, we presented
workers on Amazon Mechanical Turk with a Visual
Memory Game. In the game, participants viewed a
sequence of images, each of which was displayed for 1 sec-
ond, with a 1.4 second gap in between image presentations
(Fig. 3). Their task was to press the space bar whenever
they saw an identical repeat of an image at any time in the
sequence [5], [3]. Participants received feedback whenever
they pressed a key (a green symbol shown at the center of
the screen for correct detection, and a gray X for an error).
Image sequences were broken up into levels that con-
sisted of 120 images each. Each level took 4.8 minutes to
perform. At the end of each level, the participant saw his or
her correct response average score for that level, and was
allowed to take a short break. Participants could complete
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Fig. 3. Mechanical Turk workers played a “Memory Game” in which they watched for repeats in a long stream of images.

at most 30 levels, and were able to exit the game at any
time. A total of 665 workers from Mechanical Turk (> 95%
approval rate in Amazon’s system) performed the game.
Over 90% of our data came from 347 of these workers. We
payed workers $0.30 per level in proportion to the amount
of the level completed, plus a $0.10 bonus per fully com-
pleted level. This adds up to about $5 per hour. The average
worker stayed in the game for over 13 levels.

Unbeknownst to the participants, the sequence of
images was composed of ‘targets’ (2222 images) and
“fillers” (8220 images). Target and filler images represented
a random sampling of the scene categories from the SUN
dataset [28]. All images were scaled and cropped about
their centers to be 256x256 pixels. The role of the fillers
was two-fold: first, they provided spacing between the first
and second repetition of a target; second, responses on
repeated fillers constituted a ‘vigilance task’ that allowed
us to continuously check that participants were attentive
to the task [3], [5]. Repeats occurred on the fillers with a
spacing of 1-7 images, and on the targets with a spacing
of 91-109 images. Each target was sequenced to repeat
exactly once, and each filler was presented at most once,
unless it was a vigilance task filler, in which case it was
sequenced to repeat exactly once.

Stringent criteria were used to continuously screen
worker performance once they entered the game. First,
the game automatically ended whenever a participant fell
below a 50% success rate on the last 10 vigilance task
repeats or above a 50% error rate on the last 30 non-repeat
images. When this happened, all data collected on the cur-
rent level was discarded. Rejection criterion reset after each
level. If a participant failed any of the vigilance criteria,
they were flagged. After receiving three such flags they

2. In addition, 717 of the 8220 filler images were textural images;
178 of these were actually sequenced as targets but since we did
not include them from our subsequent memorability analysis (which
focused on generic photos of natural scenes), we refer to them for
present purposes as fillers.

were blocked from further participation in the experiment.
Otherwise, participants were able to restart the game as
many times as they wished until completing the max 30
levels. Upon each restart, the sequence was reset so that
the participant would never see an image they had seen
in a previous session. Finally, a qualification and training
‘demo’ preceded the actual memory game levels.

After collecting the data, we assigned a ‘memorability
score’ to each target image, defined as the percentage of
correct detections by participants. On average, each target
was scored by 78 participants. The average memorability
score was 67.5% (SD of 13.6%). Average false alarm rate
was 10.7% (SD of 7.6%).

Given this low false alarm rate, and the fact that false
alarm rates do not correlate with hit rates (Spearman’s
p = 0.01), we expect that false memories do not play a large
role in our memorability scores, and thus our scores are a
good measure of correct memories.

Throughout this paper, we refer to our the memorabil-
ity scores collected through our memory game as “ground
truth" memorability scores.

2.3 Is Memorability Consistent across Observers?
Are the images that are more memorable (or forgettable) for
a group of observers also more likely to be remembered (or
forgotten) by a different group of observers?

To evaluate human consistency, we split our participant
pool into two independent halves, and quantified how well
image scores measured on the first half of the participants
matched image scores measured on the second half of the
participants. Averaging over 25 random split half trials,
we calculated a Spearman’s rank correlation (p) of 0.75
between these two sets of scores. We sorted photos by their
scores given by the first half of the participants and plot-
ted this against memorability according to the second half
of the participants (Fig. 4). This shows that, for example,
if a repeat is correctly detected 80% of the time by one
half of the participants, we can expect the other half of the
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Fig. 4. Measures of human consistency. Participants were split into two
independent sets, Groups 1 and 2. Left: Images were ranked by mem-
orability scores from participants in one or the other group and plotted
against the average memorability scores given by participants in Group
1. For clarity, we convolved the resulting plots with a length-25 box fil-
ter along the x-axis. The gray chance line was simulated by assigning
the images random ranks (i.e. randomly permuting the x-axis). Right:
Spearman’s rank correlation between subject Groups 1 and 2 as a
function of the mean number of scores per image. Both left and right
analyses were repeated for 25 random splits and mean results are
plotted. Error bars show 80% confidence intervals over the 25 trials.

participants to correctly detect this repeat around 78% of
the time, corroborating that this photo is truly memorable.
At the other end of the spectrum, if a repeat is only detected
50% of the time by one half of the participants, the other
half will tend to detect it only 54% of the time — this photo
is consistently forgotten. It thus appears that there really
is sizable variation in photo memorability. (Fig. 4). Thus,
our data has enough consistency that it should be possi-
ble to predict image memorability. Individual differences
and random variability in the context each participant saw
add noise to the estimation; nonetheless, this level of con-
sistency suggests that information intrinsic to the images
might be used by different people to remember them. In
section 3, we search for this image information.

2.4 Is Memorability Consistent over Time?
In the previous sections, we showed that memorability
tested after a few minutes is a stable property of images
independent of randomized user and image sequence. But
is memorability also stable over various time delays? We
ran a variant of our Memory Game to test the effect of
delay on image memorability. The procedure was the same
as reported above (including vigilance and target repeats)
except that target repeats were sequenced to appear at one
of three possible delays, tapping into long term visual rep-
resentations: ~15 images back (with jitter this condition cor-
responded to 11-19 images back) , ~100 back (96-104 images
back) and ~1000 back (996-1004 images back). So that the
longest delay repeats would appear with equal frequency
to the shorter delay repeats, we did not start any target
repeats until after an initial 1080 images had been presented
(about 40 minutes of playing the memory game; note that
we presented vigilance repeats as usual during this phase).
We measured the memorability of each image at each
delay as the proportion of times a repeat of the image at
that delay was correctly detected, and collected about 25
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Fig. 5. Image memorability versus delay between repeat and initial
presentation. Color depicts memorability rank at shortest delay. Lines
interpolate between the measurements at each of the three delays.
Spearman’s rank correlations between memorabilites measured at
each pair of delays are given above plot. For clarity of visualization, each
plotted point and line is the mean memorability of 22 images binned in
the order of memorability at the shortest delay.

scores per delay. Fig. 5 shows the memorability scores (per-
cent of correct responses) for the three delays: for clarity,
each plotted line is the mean memorability of 22 images
binned in the order of memorability at the shortest delay.
Strikingly, even after the shortest delay (11-19 images back;
i.e. 24-48 seconds back), there were already large memora-
bility differences between the images, and these differences
were remarkably similar to those at both longer delays:
rank memorabilities at one delay correlated strongly with
those at the other delays: p = 0.61, 0.68 and 0.57 for the
three pairwise comparisons (Fig. 5). Thus, it appears that
rank memorability is stable over time.

For practical applications, this degree of stability is quite
fortunate. What is relatively memorable after ~15 inter-
vening images is also relatively memorable after ~1000
intervening images. Thus, in order to predict memorabil-
ity, we do not need to model a complex time-dependent
function; instead, for our present purposes, we will treat
rank memorability as time-independent, and investigate its
properties at the ~100 image delay.

2.5 Role of Context

A large body of research on human memory suggests that
we remember things in proportion to how well they stand
out from their local context (e.g., [2], [29], [30], [31], [32]).
Our present quest is to uncover factors that are intrinsic to
an image and make it memorable, independent of extrin-
sic variables such as observer, time delay, and local visual
context. By randomizing the sequence each participant in
our experiment sees, we ensure that our measurements do
not depend on the precise order in which the photos were
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Fig. 6. Semantic frequencies in our dataset do not explain much of the
variance in memorability. Red line is linear least squares fit.

presented. However, it remains unclear to what degree over-
all dataset statistics could have affected the memorability
scores. To test for simple interactions with dataset context, we
measured the correlation between image content frequency
in our dataset and mean memorability over images with this
content. For frequencies of images containing a particular
object, frequency of objects, and frequencies of scene category
we found no strong correlation (p = —0.05, 0.01, and —0.13
respectively; Fig. 6). This suggests that these simple forms
of dataset bias cannot explain our results. Ultimately, to test
more subtle possible interactions with context, it will be
important to measure memorability on additional datasets
and measure how well our present results generalize.

2.6 Subjective Judgments Do Not Predict
Memorability

In the previous section, we have shown that there is con-
sistency in image memorability between separate groups
of observers and over a wide range of time delays from
image presentation. In this section we want to explore a
different aspect of our measurements. When working with
collections of images, users are generally forced to make
subjective decisions such as choosing which images are
most pleasing, or of highest quality. Here we want to know
how successful one user would be if he or she were to guess
which images are the most memorable in a collection. To
test this, we ran two experiments on Mechanical Turk.

o Task 1 (Memory Judgment): we asked 30 participants
to indicate if they believe that an image is memorable
or not. In each HIT, we showed 36 images to each
participant and they had to provide for each image a
binary answer to the question “Is this a memorable
image?".

o Task 2 (Repeat Judgment): we also ran a separate task
on the same set of images asking 30 participants to
perform the following task: “For each of the images
shown below, please indicate if you would remember
seeing it or not i.e. If you were to come across this
image in the morning, and then happen to see it again
at the end of the day, do you think you would realize
that you have seen this image earlier in the day?”

For these two tasks we used the same set of 2222 tar-

get images as in the previous experiment. For each image
we computed a score by averaging the 30 participant
responses. Both tasks provided similar results with a rank
correlation between the two of p = 0.76 (this value is simi-
lar to the correlation between the two groups of participants
obtained in the memory experiment from section 2.3). This
is illustrated in Fig. 7. Fig. 7(a) shows the scatter plot of the
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Fig. 7. In each scatter plot, each dot corresponds to one image.
(a) Comparison of memorability scores measured on Participant group 1
versus those measured on Participant group 2 in the memory game. The
plot shows that there is a strong correlation between two different sets
of subjects. (b) Memorability scores from task 1 (memory) vs. task 2
(repeat). (c) Scores from task 1 vs. memorability measured during the
memory game (group 2).

experiment of section 2.3) and Fig. 7(b) shows the scatter
plot comparing the two binary Mechanical Turk tasks.
However, Fig. 7(c) shows that the subjective judg-
ments on which images are memorable do not predict the
actual memory results obtained during the memory game
(rank correlation between task 1 and the memory game is
p = —0.19 and between task 2 and the memory game
is p = —0.02). Although the memory game provides just
one way of measuring memorability, our results suggest
that users sometimes have the wrong intuition about mem-
orability. Fig. 8 shows the images that observers believed

. (b) Predicted by paniciants as being
least memorable images

Fig. 8. This figure is similar to Fig. 1 but using the judgments of par-
ticipants to select which images they believe are memorable and which
ones are not: (a) shows the 8 images participants thought would be most
memorable and (b) shows the 8 image participants thought would be
least memorable. In fact, however, set (a) has an average memorability
of 70% and set (b) has an average memorability of 74%, as measured
in our memory game. This shows that people’s intuitions about which
images are memorable can be wrong.
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Fig. 9. This figure shows 4 sets of images illustrating the images in the four corners of the scatter plot from Fig. 7(b). The number beside each set
of images corresponds to the average memorability measured by the memory game on each set of 8 images.

would be most (a) and least (b) memorable. These images figure shows 4 sets of images illustrating the images in
are very different from the ones shown in Fig. 1. the four corners of the scatter plot from Fig. 7(c). The top-

Fig. 9 further shows how subjective intuitions about left corner shows 8 images that participants rated as being
which images are memorable can be very wrong. This among the least memorable images while doing task 1.

Non Aesthetic Aesthetic
(95%) - P (88%)

Memorable

Non memorable

(37%) | (32%)

Fig. 10. In our dataset, image memorability is distinct from image aesthetics. The vertical axis separates images that are considered aesthetic
(right) vs. images that are consider not aesthetic (left). The horizontal axis separates the images that are memorable (on top) vs. images that are
not memorable (bottom). The number beside each set of images corresponds to the average memorability measured by the memory game on each

set of 8 images.
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Fig. 11. Most and least aesthetic images from our dataset as chosen by
30 participants. The top eight most aesthetic images have an average
memorability of 57%, while the least aesthetic images have an average
memorability of 84%. (a) Most aesthetic. (b) Least aesthetic.

However, those images were among the most memorable
images during the memory game. Analogously, images in
the bottom-right corner were rated as among the most
memorable images in task 1, but they were among the least
memorable images during the memory game.

Interestingly, despite that memorability is highly consis-
tent across observers, people do not have a good intuition
about which images are memorable and which ones are
not. In contrast with these subjective intuitions, our ground
truth memorability scores provide an objective measure of
how an image will affect an observer’s memory.

3 WHAT MAKES AN IMAGE MEMORABLE?

Among the many reasons why an image might be remem-
bered by a viewer, we investigate first the role of various
image-based and semantic properties of the images: color,
simple image features, object statistics, object semantics,
scene semantics, and high-level attributes. First, we will
show that some of the aspects that observers believe con-
tribute to making an image more memorable do not predict
which images are memorable.

3.1 Memorability, Aesthetics, and Interestingness

One important question to explore is the relationship
between image memorability and other subjective image
properties such as aesthetic judgments or image interesting-
ness. To measure image aesthetic value and interestingness
we ran two separate Mechanical Turk experiments on the
2222 target images. Participants were asked the questions
“Is this an aesthetic image?" and “Is this an interesting

(b) least interesting

Fig. 12. Most and least interesting images from our dataset as chosen
by 30 participants. The top eight most interesting images have an aver-
age memorability of 70%, while the least interesting images have an
average memorability of 78%. (a) Most interesting. (b) Least interesting.

image?" and had to answer this “Yes" or “No" for 36 images
per HIT. For each image we computed an aesthetic and an
interestingness score by averaging the answers given by 30
participants.

Fig. 11 shows the most and least aesthetic images and
Fig. 12 shows the most and least interesting images out
of the 2222 images from our dataset. We found that inter-
estingness and aesthetics subjective judgments are strongly
correlated (o = 0.85, see Fig. 13(a).

Fig. 13(b) and (c) show the scatter plot of memora-
bility (measured in the memory game) as a function of
the image aesthetic score and image interestingness score.
Each dot in the plot corresponds to one image. These
two image properties correlate weakly with image mem-
orability. p = —0.36 between aesthetics and memorability
and p = —0.23 between interestingness and memorabil-
ity. The negative values indicate that, in our database,
images that were less aesthetic and less interesting turned
out to be more memorable than beautiful and interesting
images.

Interestingly, image aesthetics and interestingness
strongly correlate with the subjective judgments of image
memorability (0 = 0.83 and p = 0.86 respectively for task
1). This illustrates that participants had the wrong intuition
that beautiful and interesting images will produce a lasting
memory.

Fig. 10 shows 4 sets of 8 images each showing the images
on the four corners of the scatter plot from Fig. 13(b). This
figure shows how many of the most aesthetic images are
also among the least memorable ones (e.g., the 8 images
from the bottom-right corner of Fig. 10).
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(a) Judgments of aesthetics and interestingness are highly correlated in
our dataset. However, aesthetics (b) and interestingness (c) have very
weak correlation with memorability.

Together, these results show that image memorability is
an image property that is distinct from two other commonly
used subjective image properties.

3.2 Color and Simple Image Features

Are simple image features enough to determine whether
or not an image will be memorable? We looked at the
correlation between memorability and basic pixel statistics.
Mean hue was weakly predictive of memory: as mean hue
transitions from red to green to blue to purple, memorabil-
ity tends to go down (p = -0.16). This correlation may be
due to blue and green outdoor landscapes being remem-
bered less frequently than more warmly colored human
faces and indoor scenes. Mean saturation and value, on
the other hand, as well as the first three moments of
the pixel intensity histogram, exhibited weaker correlations
with memorability (Fig. 14). These findings concord with
other work that has shown that perceptual features are
not retained in long term visual memory [2], [6]. In order
to make useful predictions, more descriptive features are
likely necessary.

3.3 Object Statistics

Object understanding is necessary to human picture mem-
ory [2], [33]. Using LabelMe [34], each image in our target
set was segmented into object regions and each of these
segments was given an object class label by a human
user (e.g., “person”, “mountain”, “stethoscope”) (see [35]
for details). In this section, we quantify the degree to
which our data can be explained by non-semantic object
statistics.

Do such statistics predict memorability? For example do
the number of objects one can attach to an image deter-
mine its memorability, or is it critical that an object class
takes up a large portion of an image in order for the image
to stick in memory? We find the answer to be no: none
of these statistics make good predictions on their own.
Simple object statistics (log number of objects, log mean
pixel coverage over present object classes, and log max
pixel coverage over object classes) did not correlate strongly
with memorability (o = 0.07, -0.06, and -0.09 respectively)
(Fig. 14).

To investigate the role of more subtle interactions
between these statistics, we trained a support vector regres-
sion (e-SVR [36]) to map object statistics to memorabil-
ity scores. For each image, we measured several object
statistics: the number of objects in the image per class,
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Fig. 14. Simple image features, as well as non-semantic object statistics,
do not correlate strongly with memorability score. Red line is linear least
squares fit.

and the number of pixels covered by objects of each class
in the entire image as well as in each quadrant of the
image. For each of these statistics, we thereby obtained
a joint distribution on (object class, statistic). We then
marginalized across class to generate histograms that only
measure statistics of the image segmentation, and contain
no semantic information: ‘Object Counts’, ‘Object Areas’,
and, concatenating pixel coverage on the entire image with
pixel coverage per quadrant, ‘Multiscale Object Areas’. We
used these histograms as features for our regression and
applied histogram intersection kernels.

For each of 25 regression trials, we split both our image
set and our participant set into two independent, random
halves. We trained on one half of the images, which were
scored by one half of the participants, and tested on the left
out images, which were scored by the left out participants.
During training, we performed grid search to choose cost
and € hyperparameters for each SVR.

We quantified the performance of our predictions simi-
larly to how we analyzed human consistency above. First,
we calculated average p between predicted memorabilities
and ground truth memorabilities. Second, we sorted images
by predicted score and selected various ranges of images in
this order, examining average ground truth memorability
on these ranges (Table 1). As an upper-bound, we com-
pared to a measure of the available consistency in our data,
in which we predicted that each test set image would have
the same memorability according to our test set participants
as was measured by our training set participants (‘Other
Humans’).

Quantified in this way, our regressions on object statis-
tics appear ineffective at predicting memorability (Table 1).
However, predictions made on the basis of the Multiscale
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TABLE 1
Comparison of Predicted versus Measured Memorabilities
Object  Object Multiscale Object Labeled Labeled Labeled Scene Attributes Objects, Other
Counts  Areas Object Label Object Object Multiscale Category Attributes,  Humans
Areas Presences  Counts Areas  Object Areas and Scenes
Top 20 68% 68% 73% 83% 81% 84% 84% 81% 87% 88% 86%
Top 100 68% 68% 72% 79% 79% 82% 82% 78% 83% 83% 84%
Bottom 100  67% 64% 64% 57% 57% 56% 56% 57% 54% 55% 47%
Bottom 20 67% 64% 65% 54% 54% 52% 53% 56% 53% 51% 40%
p 0.04 0.04 0.20 0.43 0.44 0.47 0.47 0.37 0.51 0.54 0.75

Images are sorted into sets according to predictions made on the basis of a variety of object and scene features (denoted by column headings). Average ground
truth memorabilities are reported for each set. e.g., the “Top 20” row reports average ground truth memorability over the images with the top 20 highest predicted
memorabilities. p is the spearman rank correlation between predictions and measurements.

Object Areas did begin to show substantial correlation with
measured memorability scores (o = 0.20). Unlike the Object
Counts and Object Areas, the Multiscale Object Areas are
sensitive to changes across the image. As a result, these
features may have been able to identify cues such as “this
image has a sky," while, according to the other statistics,
a sky would have been indistinguishable from a similarly
large segment, such as a closeup of a face.

3.4 Object and Scene Semantics

As demonstrated above, objects without semantics are not
effective at predicting memorability. This is not surprising
given the large role that semantics play in picture mem-
ory [2], [33]. To investigate the role of object semantics,
we performed the same regression as above, except this
time using the entire joint (object class, statistic) distri-
butions as features. This gave us histograms of ‘Labeled
Object Counts’, ‘Labeled Object Areas’, ‘Labeled Multiscale
Object Areas’, and, thresholding the labeled object counts
about zero, ‘Object Label Presences’. Each image was also
assigned a scene category label as described in [28] (‘Scene
Category’). We applied histogram intersection kernels to
each of these features.

Semantics boosted performance (Table 1). Even the
Object Label Presences alone, which simply convey a set
of semantic labels and otherwise do not describe anything
about the pixels in an image, performed well above our
best unlabeled object statistic, Multiscale Object Areas (p
= 0.43 and 0.20 respectively). Moreover, Scene Category,
which just gives a single label per image, appears to sum-
marize much of what makes an image memorable (p =
0.37). These performances support the idea that object and
scene semantics are a primary substrate of memorability [2],
(3], [33].

3.5 Semantic Attributes

Scene semantics go beyond just object content and scene
category. Hence, we investigate 127 semantic attributes that
capture the spatial layout of the scene (e.g., open, enclosed,
cluttered, etc.), aesthetics (e.g., postcard-like, unusual, etc.),
dynamics (e.g., static, dynamic, moving objects, etc), loca-
tion (e.g., famous place), emotions (e.g., frightening, funny,
etc.), actions (e.g., people walking, standing, sitting, etc.)
as well as demographics and appearance of people (e.g.,
clothing, accessories, race, gender, etc.). Please see [18] for
details.

As above, we train SVRs to map attributes to memo-
rability scores. Here, we use an RBF kernel, and achieve
a performance of p = 0.51. This performance is striking
because these attributes outperform all our above feature
sets while also being more concise (i.e. lower entropy [21]).
This suggests that high-level semantic attributes are an
especially efficient way of characterizing the memorability
of a photo.

When we combine all our semantic features together
with a kernel sum (Labeled Multiscale Object Areas +
Scene Category + Attributes), we achieve a maximum
performance of p = 0.54.

3.6 Visualizing What Makes an Image Memorable

Since object content appears to be important in determining
whether or not an image will be remembered, we fur-
ther investigated the contribution of objects by visualizing
object-based “memory maps" for each image. These maps
shade each object according to how much the object adds
to, or subtracts from, the image’s predicted memorability.
More precisely, to quantify the contribution of an object i
to an image, we take a prediction function, f, that maps
object features to memorability scores and calculate how
its prediction m changes when we zero features associ-
ated with object i from the current image’s feature vector,

(a1, ..., ay). This gives us a score s; for each object in a given
image:
my = f(@ay, - .-, an) 1
m2:f(a17"'703"'7u11) (2)
§; = my — my (3)

For the prediction function f, we use our SVR on Labeled
Multiscale Object Areas, trained as above, and we plot
memory maps on test set images (Fig. 16). Thus, these
maps show predictions as to what will make a novel image
either remembered or not remembered. The validity of
these maps is supported by the fact that the SVR we used to
generate them (the Labeled Multiscale Object Areas regres-
sion) makes predictions that correlate relatively well with
measured memory scores (p = 0.47, see Table 1).

This visualization gives a sense of how objects contribute
to the memorability of particular images. We are addition-
ally interested in which objects are important across all
images. We estimated an object’s overall contribution as
its contribution per image, calculated as above, averaged
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Fig. 15. Objects sorted by their predicted impact on memorability. Next to each object name we report how much an image’s predicted memorability
will change, on average, when the object is included in the image’s feature vector versus when it is not. For each object name, we also display two
test set images that contain the object: on the left is the example image with the highest memorability score among all test set images that contain
(over 4000 pixels of) the object. On the right is the example with the lowest score. Only objects that appear (cover over 4000 pixels) in at least 20

images in our training set are considered.

across all test set images in which it appears with substan-
tial size (covers over 4000 pixels). This method sorts objects
into an intuitive ordering: people, interiors, foregrounds,
and human-scale objects tend to contribute positively to
memorability; exteriors, wide angle vistas, backgrounds,
and natural scenes tend to contribute negatively to mem-
orability (Fig. 15). While we require human annotations
to create these visualizations, Khosla et al. have recently
shown that they can generate similar memorability maps
automatically from unlabeled images [37].

4 PREDICTING IMAGE MEMORABILITY

4.1 Predicting Memorability of Generic Images

As we have seen in the previous sections there is a sig-
nificant degree of consistency between different sets of
viewers on how memorable are individual images. In addi-
tion, we have seen that some of the consistency can be
explained in terms of the objects, scenes, and attributes
present in the picture. In this section, we describe an auto-
matic predictor of memorability, which uses only features
algorithmically extracted from an image. Here, we followed
a similar approach to works studying other subjective
image properties [8], [15], [28].

As with the object regressions, we trained an SVR to map
from image features to memorability scores. We tested a
suite of global image descriptors that have been previously
found to be effective at scene recognition tasks [28] as well
as being able to predict the presence/absence of objects in
images [38]-[40]. The facility of these features at predicting
image semantics suggests that they may be able to predict,
to some degree, those aspects of memorability that derive
from image semantics.

These global features are GIST [41], and spatial pyra-
mid histograms of SIFT [42], HOG2x2 [28], [38], [39], and
SSIM [40] features. We additionally looked at pixel his-
tograms, which capture color distributions in an image: for
each image, we built the “pixel histogram’ as the concate-
nation of three 21-bin histograms of intensity values, one
for each color channel of the RGB image. We used an RBF
kernel for GIST and histogram intersection kernels for the
other features. Lastly, we also combined all these features
with a kernel product (‘All Global Features’).

We evaluated performance in the same way as we
evaluated the object regressions, and we found that the

combination of global features performs best, achieving a
rank correlation of 0.46. This correlation is less than human
predictions, but close to our best predictions from labeled
annotations. Fig. 17 shows sample images from predicted
sets. Fig. 19 shows sample images on which our global
features regression performed poorly.

To set a high watermark, and to get a sense of the
redundancy between our image features and our annota-
tions, we additionally trained an SVR on a kernel sum
of all our global features plus Labeled Multiscale Object
Areas, Scene Categories, and Attributes (‘Global Features
and Annotations’). This combination achieved a rank cor-
relation of p = 0.57. See Table 2 and Fig. 18 for detailed
results.

The memorability variation we have predicted may
appear to be dominated by coarse categorical differences
between images: e.g., photos of people are more memorable
than photos of landscapes. Can we also predict memora-
bility differences within categories? To investigate this, we
selected subsets of our dataset and analyzed and predicted
variation within those subsets.

4.2 Memorable Photos of People

Photos of people are among the most memorable in our
dataset (average memorability score of 82%). Such pho-
tos are also especially prevalent in everyday contexts—we
share photos of each other on Facebook, remember the
faces of the thousands of friends and celebrities [25], and
may be swayed by advertisements delivered by beauti-
ful spokespeople. Consequently, it may be especially use-
ful to be able to predict the memorability of photos of

people.

TABLE 2
Comparison of Global Feature Predictions versus
Ground Truth Memory Scores

HOG All Global

Pixels GIST SIFT SSIM  2x2 Features
Top 20 73% 82% 82% 83%  84% 83%
Top 100 73% 79%  19%  80%  80% 80%
Bottom 100  61% 58% 57% 58%  58% 56%
Bottom 20 59% 57%  55%  55% @ 56% 54%
p 0.22 0.38 041 0.43 0.43 0.46

Uses same measures as described in Table 1.
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(b) Predlcted as typlcal memorabnlty 65% )
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Fig. 16. Visualization of how each object contributes to the memorabil-
ity of sample images spanning a range of memorability predictions. We
estimate contribution as the difference between predicted memorability
when the object is included in the image versus when it is removed from
the image. In red, we show objects that contribute to higher predicted
memorability and in blue are objects that contribute to lower predicted
memorability. Brightness is proportional to the magnitude of the contri-
bution. Average measured memorability of each sample set is given in
parentheses. (a) Predicted as highly memorable (79%). (b) Predicted as
typical memorability (65%). (c) Predicted as unmemorable (52%).

We took a first step in this direction by testing our algo-
rithm just on the photos of people in our dataset (defined
as photos with at least 5,000 pixels labeled as person, or
a synonym, and with the attribute face visible). Within this
subset, which consisted of 209 photos, split half consistency
between our participants was p = 0.53—robust variation
in memorability exists even within this constrained subset.
Using our best automatic predictor (“All Global Features’),
we achieved a rank correlation between predictions and
measurements of p = 0.16. A summary of our predictions,
and the ground truth variability, is given in Fig. 20. We
additionally tried training SVRs on just photos of people,
in order to perhaps better fit to the specific variation in this

(c) Predicted least memorable (53%)

Fig. 17. Eight images predicted, on the basis of global image features,
as being the most memorable out of all test setimages. (a) Eight images
with average memorability predictions. (b) Eight images predicted as
being the least memorable of all test set images. (c) Number in paren-
theses gives the mean ground truth memorability score for images in
each set. The predictions produce clear visual distinctions, but may fail
to notice more subtle cues that make certain images more memorable
than others.

class of photos. This training scheme did not substantially
improve performance (p = 0.17).

4.3 Memorable Photos of Nature

Photos of nature tend to be less memorable than artificial
scenes (average memorability score of 61%), but are all pho-
tos of the natural world forgettable? We analyzed the subset
of photos in our dataset categorized as outdoor-natural in the
SUN dataset [28], and with less than 1,000 pixels labeled as
person (this gave us 373 photos in total). We analyzed this
subset in the same way as we analyzed the people subset:
split half consistency among experiment participants was
p = 0.74 and our best predictor, trained on all photos and
tested on nature photos, reached p = 0.32 (training just on
nature photos gives p = 0.29). Some photos of nature are
consistently more memorable than others (Fig. 20).
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Fig. 18. Comparison of regressions results averaged across 25 random

split half trials. Images are ranked by predicted memorability and plot-

ted against the cumulative average of ground truth memorability scores.

Error bars omitted for clarity.

4.4 Memorability of Aesthetic Images

Another image subset of particular interest is those images
marked as being aesthetic. We envision memorability scores
as being a useful and novel way of quantifying image util-
ity. However, for many applications, we may want images
that are not just memorable, but are also good in other
ways. For example, a photographer may want to identify
images that are both memorable and beautiful — photos of
office chairs and toilets, despite the fact that they may be

Predicted
(p =0.31)

Ground truth

Predicted
(p=0.16)

Ground truth
(p =0.53)

Predicted

Ground truth
(p=0.74)

Memorable

Aesthetic photos

Photos of nature
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S
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(a) Prediction too high (+913/1111)
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(b) Prediction too low (-935/1111)

Fig. 19. Eight images whose predicted memorability rank, on the basis
of global features, most overshot ground truth memorability rank (a) and
most undershot ground truth memorability rank (b). Mean rank error
between predicted and measured ranks across each set of images is
given in parentheses.

memorable, probably will not do. We are thus interested in
combining multiple photo quality metrics at once. Given
ground truth aesthetics ratings, can we automatically pick
out the images that are both beautiful and memorable?

P Forgettable

Fig. 20. Memorability predictions within particular image type subsets. Rows labeled “predicted” give the images our system predicts as most
memorable (left) and most forgettable (right) within each subset. Rows labeled “ground truth” give the images found as most memorable (left) and
most forgettable (right) using our memory game measurements. For the “predicted” rows, p values measure rank correlation between predictions
and ground truth. For the “ground truth” rows, p values measure rank correlation between independent sets of empirical measurements.
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Here we selected the top 250 photos with the highest
value of the Is this an aesthetic image? attribute defined in
section 3.1. Split half consistency among experiment par-
ticipants was p = 0.76 and our predictions, trained on all
photos and tested on the selected aesthetic photos, reached
p = 0.31 (training on just the selected aesthetic photos gives
p =0.28).

5 CONCLUSION

Making memorable images is a challenging task in visu-
alization and photography, and is generally presented
as a vague concept hard to quantify. Surprisingly, there
has been no previous attempt to systematically measure
this property on image collections, and to apply com-
puter vision techniques to extract memorability automat-
ically. Measuring subjective properties of photographs is
an active domain of research with numerous applications.
Our present work could be used to extract, from a collection
of images, the ones that are most likely to be remembered
by viewers. This could be applied to selecting images for
illustrations, covers, user interfaces, educational materials,
memory clinical rehabilitation, and more.

In this paper we have shown that predicting image
memorability is a task that can be addressed with current
computer vision techniques. We have measured memorabil-
ity using a restricted experimental setting in order to obtain
a meaningful quantity: we defined an image’s memorability
score as the probability that a viewer will detect a repeat of
the image within a stream of pictures. We have shown that
there is a large degree of consistency among different view-
ers, even at different time delays, and that some images are
more memorable than others even when there are no famil-
iar elements (such as relatives or famous monuments). This
work is a first attempt to quantify this important property
of individual images. Future work will investigate the rela-
tionship between image memorability and other measures
such as object importance [17], [18], saliency [12], and photo
quality [8].
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